Figure QW-466.1 Test Jig Dimensions

Replace with EXACT text entries from the 2015 edition, which are shown on pages 3 and 4 of this proposal file.

Figure QW-466.1

Test Jig Dimensions (Cont'd)

GENERAL NOTES:
(a) For P-Numbers, see QW/QB-422; for F-Numbers, see QW-432.
(b) For guided-bend jig configuration, see QW-466.2, QW-466.3, and QW-466.4.
(c) The weld and heat-affected zone, in the case of a transverse weld bend specimen, shall be completely within the bend portion of the specimen after testing.
(d) For materials with less than 3\% elongation, a macro-etch specimen shall be used in lieu of bend test at each bend test location. Acceptance criteria shall be in accordance with QW-183(a).
(e) When the bending properties of the weldment make it unlikely that the requirements of General Note (c) can be met, the wrap around jig shown in Figure QW-466.3 should be considered.

NOTE:
(1) The dimensions of the test jig shall be such as to give the bend test specimen a calculated percent outer fiber elongation equal to at least that of the base material with the lower minimum elongation as specified in the base material specification.

$$
\text { percent outer fiber elongation }=\frac{100 t}{A+t}
$$

The following equation is provided for convenience in calculating the bend specimen thickness:

$$
\text { thickness of specimen }(t)=\frac{A \times \text { percent elongation }}{[100-(\text { percent elongation })]}
$$

Figure QW-466.1 Test Jig Dimensions (Cont'd)

SI Units					
Material	Thickness of Specimen, mm	$A, \mathrm{~mm}$	$B, \mathrm{~mm}$	$C, \mathrm{~mm}$	D, mm
All others with greater than or equal to 20% elongation	$\begin{aligned} & 10 \\ & t=10 \text { or less } \end{aligned}$	$\begin{aligned} & 40 \\ & 4 t \end{aligned}$	$\begin{aligned} & 20 \\ & 2 t \end{aligned}$	$\begin{aligned} & 63 \\ & 6 t+3.2 \end{aligned}$	$\begin{aligned} & 32 \\ & 3 t+1.6 \end{aligned}$
Materials with 3\% to less than 20\% elongation	$t=[$ see Note (1)]	$\begin{aligned} & 32^{7} / 8 \\ & t \text { max. } \end{aligned}$	$\begin{gathered} 16^{7} / 16 t \\ \max . \end{gathered}$	$\begin{gathered} A+2 t+1.6 \\ \quad \max . \end{gathered}$	$\begin{gathered} 1 / 2 C+0.8 \\ \text { max. } \\ \hline \end{gathered}$

GENERAL NOTES:
(a) For P-Numbers, see QW/QB-422; for F-Numbers, see QW-432.
(b) For guided-bend jig configuration, see QW-466.2, QW-466.3, and QW-466.4.
(c) The weld and heat-affected zone, in the case of a transverse weld bend specimen, shall be completely within the bend portion of the specimen after testing.
(d) For materials with less than 3\% elongation, a macro-etch specimen shall be used in lieu of bend test at each bend test location. Acceptance criteria shall be in accordance with QW-183(a).
(e) Figure QW-466.3 shows the recommended method of testing aluminum weldments.

NOTE:
(1) The dimensions of the test jig shall be such as to give the bend test specimen a calculated percent outer fiber elongation equal to at least that of the base material with the lower minimum elongation as specified in the base material specification.

$$
\text { percent outer fiber elongation }=\frac{100 t}{A+t}
$$

The following equation is provided for convenience in calculating the bend specimen thickness:

$$
\text { thickness of specimen }(t)=\frac{A \times \text { percent elongation }}{[100-(\text { percent elongation })]}
$$

