Title: Errata to correct misspelled word in para. 841.1.9(b)

Rationale: In the 1955-2016 Editions of the Code, the word "supported" was spelled correctly in the 1st sentence of para. 841.1.9(b). For no apparent reason, the Publishers misspelled this word in the 2018 Edition. This needs to be changed back to the way it was.
Table 841.1.6-1 Basic Design Factor, F

<table>
<thead>
<tr>
<th>Location Class</th>
<th>Design Factor, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Class 1, Division 1</td>
<td>0.80</td>
</tr>
<tr>
<td>Location Class 1, Division 2</td>
<td>0.72</td>
</tr>
<tr>
<td>Location Class 2</td>
<td>0.60</td>
</tr>
<tr>
<td>Location Class 3</td>
<td>0.50</td>
</tr>
<tr>
<td>Location Class 4</td>
<td>0.40</td>
</tr>
</tbody>
</table>

(a) P for furnace buttwelded pipe shall not exceed the restrictions of para. 841.1.1 or 60% of mill test pressure, whichever is the lesser.

(b) P shall not exceed 85% of the mill test pressure for all other pipes provided; however, that pipe, mill tested to a pressure less than 85% of the pressure required to produce a hoop stress equal to the specified minimum yield, may be retested with a mill type hydrostatic test or tested in place after installation. In the event the pipe is retested to a pressure in excess of the mill test pressure, then P shall not exceed 85% of the retest pressure rather than the initial mill test pressure. It is mandatory to use a liquid as the test medium in all tests in place after installation where the test pressure exceeds the mill test pressure. This paragraph is not to be construed to allow an operating pressure or design pressure in excess of that provided for by para. 841.1.1.

841.1.4 Limitations on Specified Minimum Yield Strength, S, in Para. 841.1.1

(a) If the pipe under consideration is not new pipe purchased under a specification approved and listed in this Code, the value of S may be determined in accordance with one of the following:

(1) S value for new pipe qualified under para. 811.2.2

(2) S value for reuse of steel pipe qualified under one of the provisions of para. 817.1

(3) S value for pipe of unknown specification as determined by para. 817.1.3(h)

(b) When pipe that has been cold worked for meeting the specified minimum yield strength is subsequently heated to a temperature higher than 900°F (482°C) for any period of time or over 600°F (316°C) for more than 1 hr, the maximum allowable pressure at which it can be used shall not exceed 75% of the value obtained by use of the steel pipe design formula given in para. 841.1.1.

(c) In no case where the Code refers to the specified minimum value of a mechanical property shall the higher actual value of a property be substituted in the steel pipe design formula given in para. 841.1.1. If the actual value is less than the specified minimum value of a mechanical property, the actual value may be used where it is permitted by the Code, such as in para. 817.1 regarding the reuse of steel pipe.

841.1.5 Additional Requirements for Nominal Wall Thickness, t, in Para. 841.1.1

(a) The nominal wall thickness, t, required for pressure containment as determined by para. 841.1.1 may not be adequate for other forces to which the pipeline may be subjected. [See para. 840.1(a).] Consideration shall also be given to loading due to transportation or handling of the pipe during construction, weight of water during testing, and soil loading and other secondary loads during operation. [See para. 841.1.11(e) for suggested methods to provide additional protection.] Consideration should also be given to welding or mechanical joining requirements. Standard wall thickness, as prescribed in ASME B36.10M, shall be the least nominal wall thickness used for threaded and grooved pipe.

(b) Transportation, installation, or repair of pipe shall not reduce the wall thickness at any point to a thickness less than 90% of the nominal wall thickness as determined by para. 841.1.1 for the design pressure to which the pipe is to be subjected.

841.1.6 Design Factors, F, and Location Classes. The design factor in Table 841.1.6-1 shall be used for the designated Location Class. All exceptions to basic design factors to be used in the design formula are given in Table 841.1.6-2.

841.1.7 Longitudinal Joint Factor. The longitudinal joint factor shall be in accordance with Table 841.1.7-1.

841.1.8 Temperature Derating Factor. The temperature derating factor shall be in accordance with Table 841.1.8-1.

841.1.9 Additional Design Information or Instructions

(a) Fabricated Assemblies. When fabricated assemblies, such as connections for separators, main line valve assemblies, cross connections, river crossing headers, etc., are to be installed in areas defined in Location Class 1, a design factor of 0.6 is required throughout the assembly and for a distance equal to the lesser of 50 meters or 16 ft (3 m) in each direction beyond the edge. A shorter distance may be used provided that combined stresses are considered in the design of the installation. Transition pieces at the end of an assembly and elbows used in place of pipe bends are not considered fittings under the requirements of this paragraph. Also see section 822.

(b) Pipelines or Mains on Bridges. The design factor for pipelines or mains supported by railroad, vehicular, pedestrian, or pipeline bridges shall be determined in accordance with the Location Class prescribed for the area in which the bridge is located. In Location Class 1, however, a design factor of 0.6 shall be used.