stresses in shells, hemispherical heads, and tubular products are given in Appendix VII.

NG-3133.2 Nomenclature. The symbols used in this paragraph are defined as follows:

- **A** = factor determined from Fig. G, Section II, Part D, Subpart 3 and used to enter the applicable material chart in Section II, Part D, Subpart 3. For the case of cylinders having \(D_o/T \) values less than 10, see NG-3133.3(b). Also, factor determined from the applicable chart in Section II, Part D, Subpart 3 for the material used in a stiffening ring, corresponding to the factor \(B \) and the design metal temperature for the shell under consideration.

- **A_s** = cross-sectional area of a stiffening ring

- **B** = factor determined from the applicable chart in Section II, Part D, Subpart 3 for the material used in a shell or stiffening ring at the design metal temperature

- **D_o** = outside diameter of the cylindrical shell course or tube under consideration

- **E** = modulus of elasticity of material at Design Temperature (for this value, see Table TM, Section II, Part D, Subpart 2). Use the curve with this value on the material/temperature line of the applicable chart in Section II, Part D, Subpart 3.

- **I** = available moment of inertia of the combined ring–shell section about its neutral axis, parallel to the axis of the shell, in.\(^4\) (mm\(^4\)). The width of the shell which is taken as contributing to the combined moment of inertia shall not be greater than 1.10 \(\sqrt{D_o/T} \), and shall be taken as lying one-half on each side of the centroid of the ring. Portions of shell plates shall not be considered as contributing area to more than one stiffening ring.

- **I_s** = required moment of inertia of the combined ring–shell section about its neutral axis parallel to the axis of the shell

- **L** = total length of a tube between tubesheets, or the design length of a cylindrical section, taken as the largest of the following:
 1. the distance between head tangent lines plus one-third of the depth of each head if there are no stiffening rings
 2. the greatest center-to-center distance between any two adjacent stiffening rings or
 3. the distance from the center of the first stiffening ring to the head tangent line plus one-third of the depth of the head, all measured parallel to the axis of the cylinder, in. (mm)

- **L_s** = one-half of the distance from the center line of the stiffening ring to the next line of support on one side, plus one-half of the center line distance to the next line of support on the other side of the stiffening ring, both measured parallel to the axis of the component. A line of support is
 1. a stiffening ring that meets the requirements of this paragraph
 2. a circumferential line on a head at one-third the depth of the head from the head tangent line or
 3. a circumferential connection to a jacket for a jacketed section of a cylindrical shell

- **P** = external design pressure (gage or absolute, as required)

- **P_T** = allowable external pressure (gage or absolute, as required)

- **R** = inside radius of spherical shell

- **S** = the lesser of 1.5 times the stress intensity at design metal temperature from Tables 2A and 2B, Section II, Part D, Subpart 1 or 0.9 times the tabulated yield strength at design metal temperature from Tables Y-1, Section II, Part D, Subpart 2

- **T** = minimum required thickness of cylindrical shell or tube, or spherical shell

- **T_n** = nominal thickness used, less corrosion allowance, of a cylindrical shell or tube

NG-3133.3 Cylindrical Shells and Tubular Products

(a) The minimum thickness of cylindrical shells or tubular products under external pressure difference having \(D_o/T \) values equal to or greater than 10 shall be determined by the procedure given in Steps 1 through 8.

Step 1: Assume a value for \(T \). Determine the ratios \(L/D_o \) and \(D_o/T \).

Step 2: Enter Fig. G, Section II, Part D, Subpart 3 at the value of \(L/D_o \) determined in Step 1. For values of \(L/D_o \) greater than 50, enter the chart at a value of \(L/D_o \), of 50. For values of \(L/D_o \), less than 0.05, enter the chart at a value of \(L/D_o \) of 0.05.

Step 3: Move horizontally to the line for the value of \(D_o/T \) determined in Step 1. Interpolation may be made for intermediate values of \(D_o/T \). From this intersection move vertically downwards and read the value of factor \(A \).

Step 4: Using the value of \(A \) calculated in Step 3, enter the applicable material chart in Section II, Part D, Subpart 3 for the material/temperature under consideration. Move vertically to an intersection with the material/temperature line for the Design Temperature. Interpolation may be made between lines for intermediate temperatures. In cases where the value of \(A \) falls to the right of the end of the material/temperature line, assume an intersection with the horizontal projection of the upper end of the material/temperature line. For values of \(A \) falling to the left of the material line, see Step 7.

Step 5: From the intersection obtained in Step 4 move horizontally to the right and read the value of \(B \).
SECTION III, DIVISIONS 1 AND 2 — INTERPRETATIONS VOL. 60

Interpretation: III-1-10-03

Subject: Section III, Division 1, NG-3234, Level C Service Limits for Threaded Structural Fasteners

Date Issued: August 20, 2009

File: 09-786

Question: Should only the stress limits of NG-3232 (NG-3232.1 and NG-3223.2) be applicable to high-strength fasteners (specified minimum $S_u \geq 100$ ksi) under Level C service conditions?

Reply: Yes.

Interpretation: III-1-10-04

Subject: Section III, Division 1, NG-3234, Level C Service Limits for Threaded Structural Fasteners

Date Issued: August 20, 2009

File: 09-1291

Question: May special processes (such as stress improvement techniques) that are not specifically addressed in Section III be performed under the rules of Section III construction?

Reply: Yes, provided the controls of NCA-4134.9 and the Code are met.

Interpretation: III-1-10-05

Subject: Section III, Division 1, NCA-3689, Certificate of Compliance

Date Issued: August 20, 2009

File: 09-1293

Question (1): Are there any limitations on the dimensions of materials that are listed on the Certificate of Compliance for nonwelded supports?

Reply (1): No.

Question (2): When a support manufacturer transmits copies of the material Certificates of Compliance applicable to each support as permitted by NF-2130(d), is a support Certificate of Compliance also required to be submitted by the NS certificate holder?

Reply (2): Yes.