UNCERTAINTY REDUCTION IN FATIGUE LIFE VALIDATION TESTING FOR DRILLING TOOLS WITH A UNIVERSAL RUNOUT COMPENSATOR

Paper Number VVS2023-107686

Michael Du, Fei Song, Ke Li
SLB, Sugar Land, TX, USA

May 17-19, 2023, Baltimore, MD, USA
Agenda

• Application Background
• Rotating Bending Fatigue Testing
• Issues and General Mitigation Approaches
• Theories and Equipment Design Improvements
• Modeling and Simulations
• Results and Discussion
• Conclusions
Application Background

• Oil Well Drilling String
• Directional Drilling
• High Dog-Leg-Severity Jobs
• Drill Collar Connection Improvements
Rotating Bending Fatigue Testing

- Fatigue Test Machine

\[
\text{Bending Moment } F_s L_s + F_w L_w
\]

![Diagram showing key components and calculations related to rotating bending fatigue testing.](image)
Issues and General Mitigation Approaches

• Runout Issues
 • Bending moment miscalculated
 • DUT falling off
Possible Mitigations

• Eccentric Shims
 • Straight forward
 • One for each DUT with specific runout
 • Not reliable – falling off

• Universal Runout Compensator (URC)
 • Adjustable for any runout
 • Reliable – no falling off
URC Theoretical Analysis

• Runout Compensation
 • Eccentric bushing-I
 • Eccentric bushing-II
 • Total eccentricity compensation

\[E_t = E_1 + E_2 \]

\[E_t = \sqrt{E_1^2 + E_2^2 - 2E_1E_2\cos\theta} \]

\[\theta = \arccos\left(\frac{E_1^2 + E_2^2 - E_t^2}{2E_1E_2}\right) \]

\[\alpha = \pi - \arccos\left(\frac{E_1^2 + E_t^2 - E_2^2}{2E_1E_t}\right) \]
URC Theoretical Analysis

- Total Runout Compensation E_t VS Relative Angular Displacement θ
 - $E_1 = E_2 = 1.0$
 - $E_t = 0$, when $\theta = 0$ or 2π
 - $E_t = 2.0$ when $\theta = \pi$
URC Design

- DUT Extension
- Bushing-I
- Bushing-II
URC On Test Machine

• Test Setup
Numerical Modeling & Simulations

• Model setup
Numerical Modeling & Simulations

• Deformation
• Contact pressure
Numerical Modeling & Simulations

- FEA Mesh Refinement
 - Results variation < 5%

<table>
<thead>
<tr>
<th>Mesh Nominal Size</th>
<th>0.2”</th>
<th>0.12”</th>
<th>0.08”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Nodes</td>
<td>492,621</td>
<td>903,061</td>
<td>1,263,906</td>
</tr>
<tr>
<td>Average Contact Pressure Variation</td>
<td>22%</td>
<td></td>
<td>1.2%</td>
</tr>
</tbody>
</table>

![Graph showing average contact pressure variation with number of nodes](image-url)
Results and Discussion

• Uncertainty Source Analysis

\[\delta N = \left(\frac{\partial N}{\partial E_c} \right) \delta E_c \]

\[\frac{\delta N}{N} = \left(\frac{\partial N}{\partial E_c} \right) \frac{\delta E_c}{N} \]
Results and Discussion

• Test Fatigue Testing
Results and Discussion

• Bending Moment vs Eccentricity

<table>
<thead>
<tr>
<th>Eccentricity (in)</th>
<th>Bending Moment Variation</th>
<th>Estimated Fatigue Life (cycle)</th>
<th>Uncertainty from Eccentricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0%</td>
<td>8.6×10^6</td>
<td>0%</td>
</tr>
<tr>
<td>0.005</td>
<td>1.3%</td>
<td>8.2×10^6</td>
<td>5%</td>
</tr>
<tr>
<td>0.025</td>
<td>7.8%</td>
<td>6.3×10^6</td>
<td>27%</td>
</tr>
<tr>
<td>0.050</td>
<td>16%</td>
<td>4.4×10^6</td>
<td>49%</td>
</tr>
</tbody>
</table>
Results and Discussion

• Fatigue Life vs Eccentricity

<table>
<thead>
<tr>
<th>Eccentricity (in)</th>
<th>Bending Moment Variation</th>
<th>Estimated Fatigue Life (cycle)</th>
<th>Uncertainty from Eccentricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0%</td>
<td>8.6×10^6</td>
<td>0%</td>
</tr>
<tr>
<td>0.005</td>
<td>1.3%</td>
<td>8.2×10^6</td>
<td>5%</td>
</tr>
<tr>
<td>0.025</td>
<td>7.8%</td>
<td>6.3×10^6</td>
<td>27%</td>
</tr>
<tr>
<td>0.050</td>
<td>16%</td>
<td>4.4×10^6</td>
<td>49%</td>
</tr>
</tbody>
</table>
Conclusions

• URC in RBF tests could decrease the bending moment variation by 15%, which could reduce fatigue life uncertainty by 44%,
• Finite element method used for development of the URC ensured its structural integrity, and
• URC prevents DUT from slipping out of the test machine because of excessive runout, thereby improving safety of the test setup.
Further Discussion

• Questions and comments