A Case Study in Improvement of a Multiphysics Model Through the Application of Verification & Validation Methods

ASME 2020 Verification and Validation Symposium

Ian Tregillis*, Aaron Koskelo‡, Brandon Wilson‡

Los Alamos National Laboratory

*XCP-6: Plasma Theory and Applications
‡XCP-8: Verification and Analysis

May 22, 2020
This talk is a direct sequel to VVS2019-5137; both talks cover work documented in Tregillis & Koskelo, JVVUQ 4(4):041004 (2019)

• Brief Recap of Earlier Work
 – The RMI+SSVD Ejecta Source Model in Theory & Simulation
 – Model Performance in Validation & Verification Spaces
• Expanding Scope to Encompass Other Physics Data
• Boundary Conditions for an Entire Class of Source Models
• A Modified (“BC Aware”) Version of the RMI+SSVD Model
• Validation Meta-Analysis
• Refinements to the “Compatibility Score” Metric
• Summary
A physics hypothesis for ejecta production at shocked free surfaces: the RMI+SSVD source model

The RMI source model posits that imperfections on the free surface seed the growth of a Richtmyer-Meshkov fluid instability, and that ejecta originate from the disintegration of RMI spike features.

Proton radiography data suggest the spikes evolve self-similarly, thereby yielding a velocity distribution (SSVD) for the ejecta mass.

Our goal is to evaluate the source model & the quality of its numerical implementation in FLAG.

Buttler et al. J. Fluid Mech. 703:60 (2012);
Dimonte et al. J. Appl. Phys. 113:024905 (2013);

The RMI+SSVD ejecta source model has been implemented as a sub-grid model in FLAG†.

This simulation capability has been applied to HE-driven, singly shocked tin coupons fielded in vacuum:

Getting the right amount of material at the right place at the right time requires:

- HE modeling
- strength modeling
- equations of state
- numerical methods
- ejecta modeling (subgrid)

†Fung et al., Computers & Fluids 83:177 (2013); Harrison, LA-UR-15-26632
The assumptions built into the piezo analysis describe a system with a closed-form solution. We have derived that solution* for LANL’s RMI+SSVD model.

Source Function for RMI+SSVD

\[m_c(w, t_c) = \frac{2}{3} m_0 \cdot \frac{1}{t_c + \beta \tau} \cdot \frac{\xi e^{-\frac{\xi w}{\eta^2}} + 1}{(2 - e^{-\xi}) \eta^s} \cdot \Pi(t_c) \]

True Mass Accumulation on Sensor

\[m_t(t) = \left\{ \begin{array}{ll}
\frac{2m_0 \xi}{3 \eta^s (2 - e^{-\xi})} \int_{t / \eta^s}^{h - u_{fs}} e^{-\frac{\xi w}{\eta^2}} \ln \left[p(t) + \frac{q(t)}{w} \right] dw & (t > t^*) \\
+ \frac{2m_0}{3 \eta^s (2 - e^{-\xi})} \ln \left(1 + \frac{t_{cf}}{\beta \tau} \right) & (t \leq t^*)
\end{array} \right. \]

Error Imposed by Instant-Production Assumption

\[\Delta m(t) = m_t(t) - m_t(t_{cf}) \]

These expressions aren’t coded into FLAG.

This is a framework for mathematical verification†.

\[\beta \tau: \text{ RMI timescale} \]
\[\tilde{w} = \hat{\eta}^s: \text{ max. relative velocity} \]
\[\hat{u}: \text{ max. lab-frame velocity} \]
\[\xi: \text{ self-similarity parameter} \]
\[m_0: \text{ mass normalization} \]
\[t^*: \text{ time of } \hat{u} \text{ depletion} \]
\[t_{cf}: \text{ ejecta shut-off time} \]
\[t_{oa}: \text{ time of first arrival} \]
\[h: \text{ sensor distance} \]

\[p(t) = 1 + \frac{t}{\beta \tau} \quad q(t) = \frac{u_{fs} - h}{\beta \tau} \quad t^* = \frac{h + \hat{\eta}^s t_{cf}}{\tilde{w}} \]

Los Alamos National Laboratory

5/11/20 | 5
Verification: FLAG calculations adhere to the model.
Validation: The model deviates from the data.

Vogan 06: Predicted, Simulated, & Piezoelectrically Inferred Mass Data
(3.8.Alpha.14: nisites = 0, floor_npackets = 1, Npp = 10^5)

100% data ± 1σ at t₀ (linear: 100% → 10%)
FLAG ejfoil (corrected for u_r ≠ 0 & u_f,t): Original SSVD
Analytic m_r ± 1σ (pinned to data endpoints): Original SSVD

Theory

"Verification"

"Validation"

Data

Simulations

Compatibility Score*

FLAG / data
13.9

Theory / data
39.7

FLAG / Theory
64.9
Piezoelectric voltage datasets from these and related experiments exhibit two apparently global properties.

The time-dependent piezoelectric voltages:

- rise smoothly from the baseline, and
- are continuous.

These properties encode requirements for the model prediction, including:

\[
V(t_{a0}) = 0 \\
V'(t_{a0}) = 0 \\
\lim_{t \to t^-} V(t) = \lim_{t \to t^+} V(t) \forall t
\]

The voltage properties can be expressed mathematically for a class of ejecta source models encompassing RMI+SSVD.

Any ejecta source model with a stationary velocity distribution, or which is well-approximated as such, has a source areal mass function of the generic form

$$m_c(w, t_c) = m_0 g(t_c) f(w) \prod_{t_0}^{t_{cf}}(t_c)$$

One can show analytically* that such a source function will predict

$$V(t_{a0}) = \kappa_p \frac{m_0}{h} \frac{\hat{u}^4}{\hat{w}} g(0) f(\hat{w})$$

$$V'(t_{a0}) = \kappa_p \left\{ \frac{m_0}{h^2} \left[\frac{\hat{u}^6}{\hat{w}^2} - 4 \frac{\hat{u}^5}{\hat{w}} \right] g(0) f(\hat{w}) + \frac{m_0}{h} \frac{\hat{u}^5}{\hat{w}^2} g'(0) f(\hat{w}) - \frac{m_0}{h^2} \frac{\hat{u}^6}{\hat{w}} g(0) f'(\hat{w}) \right\}$$

$$\Delta V(t^*) = \kappa_p \frac{m_0}{h - u_{fs} t_{cf}} \frac{\hat{u}^4}{\hat{w}} g(t_{cf}) f(\hat{w})$$

where the fastest particles are depleted at t^* and κ_p is a constant defined by the pin.

*Full derivation in Tregillis, LA-UR-18-27420 (2018); see also Tregillis & Koskelo, JVVUQ 4:041004 (2019)
The RMI+SSVD source model violates the required boundary conditions. A simple modification can fix that.

\[V(t_{a0}) = 0 \implies g(0) = 0 \text{ or } f(\hat{w}) = 0 \]
\[V'(t_{a0}) = 0 \implies g(0) = g'(0) = 0, \text{ or } g(0) = f(\hat{w}) = 0, \text{ or } f(\hat{w}) = f'(\hat{w}) = 0 \]
\[\Delta V(t^*) = 0 \implies g(t_{cf}) = 0 \text{ or } f(\hat{w}) = 0 \]

RMI+SSVD (stationary approx.)

\[g(t_c) = \frac{2}{3} \frac{1}{t_c + \beta' \tau} \]
\[f(w) = \frac{\xi e^{-\xi \frac{w}{\hat{w}}} + 1}{(2 - e^{-\xi})\hat{w}} \]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V(t_{a0}) \neq 0)</td>
<td>(g(0) =) 0 \text{ or } (f(\hat{w}) = 0)</td>
</tr>
<tr>
<td>(V'(t_{a0}) \neq 0)</td>
<td>(g(0) = g'(0) = 0, \text{ or } g(0) = f(\hat{w}) = 0, \text{ or } f(\hat{w}) = f'(\hat{w}) = 0)</td>
</tr>
<tr>
<td>(\Delta V(t^*) \neq 0)</td>
<td>(g(t_{cf}) = 0 \text{ or } f(\hat{w}) = 0)</td>
</tr>
</tbody>
</table>

All requirements can be satisfied with a simple modification to the SSVD:

\[\tilde{f}(w) = \kappa[f(w) - f(\hat{w})] \]
(\(\kappa \) is required to conserve mass)

will have \(\tilde{f}(\hat{w}) = 0, \tilde{f}'(\hat{w}) \approx 0 \) for sufficiently large \(\xi \) (FLAG uses 7.2).

Let’s consider a model that combines RMI with this “modified” SSVD.
One change to the SSVD corrects three discrepancies in the model’s voltage predictions.

- **ANY** source model will exhibit these problems if it violates the required BCs.
- These problems **ARE NOT CAUSED** by attempting to fit nuances of the data.
- Thresholding the data **DOES NOT CHANGE** this result.

Vogan et al. J. Appl. Phys. 98:113508 (2005); piezoelectric data courtesy of William Buttler.
Synthetic (analytic) radiographs illustrate the beneficial effect of modifying the SSVD in accordance with the boundary condition requirements.

The ejecta leading edge is typically invisible in X-ray transmission data.
Recomputing the analytic mass prediction using the modified SSVD.

Vogan 06: Predicted, Simulated, & Piezoelectrically Inferred Mass Data
(3.8.Alpha.14: nsites = 0, floor_npackets = 1, Npp = 10)

- 100% data ±1σ at tf (linear: 100% → 10%)
- FLAG efoil (corrected for uv ≠ 0 & uf,): Original SSVD
- Analytic m1 ± 1σ (pinned to data endpoints): Original SSVD

Original SSVD

<table>
<thead>
<tr>
<th>Score</th>
<th>FLAG / 100% data</th>
<th>~14%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory / 100% data</td>
<td>~40%</td>
<td></td>
</tr>
</tbody>
</table>

Graph:
- Cumulative Ejecta Mass/Area on Sensor [mg/cm²]
- Time since Shock Breakout [µs]

Key Points:
- **Original SSVD** score for 100% data is ~14%.
- **Theory** score for 100% data is ~40%.

...yields a significantly improved comparison to the unthresholded mass data.

The original SSVD has at t_{a0}

$$\dot{m}_{t,i} = 0; \bar{m}_{t,i}, \ddot{m}_{t,i} \neq 0$$

The modified SSVD has at t_{a0}

$$\dot{m}_{t,i} = \bar{m}_{t,i} = \ddot{m}_{t,i} = 0$$

Vogan 06: Predicted, Simulated, & Piezoelectrically Inferred Mass Data

(3.8.Alpha.14: nsites = 0, floor_npackets = 1, N_{tp} = 10^3)
But there are many ways to conduct the comparisons...

- **SSVD**: Free parameter. FLAG uses 7.2, based on empirical comparison to data
- **Ejecta**: Predicted: Derived strictly from the RMI model prediction
 Pinned: Pinned to the value implicit in the data (1st arrival time)
- **Data**: Unthresholded: 100% of recorded mass domain
 Thresholded: 99% of recorded mass domain
- **Production interval**: Tuned: tuned to match the total observed mass for each shot
 Prescribed: set by ansatz*: $t_{cf} = a \lambda / u_{fs}$; $a = 40 \pm 10$
- **Time-dependent data uncertainty**: Constant: 1σ uncertainty is 10% at all times
 Linear: 1σ uncertainty declines linearly 100% → 10%

…so we computed the model / data compatibility score for 115,200 scenarios.

Ensemble Parameters

- ξ: 400 values: $2 \leq x \leq 22$
- data: 100% & 99%
- t_{cf}: tuned (1) & prescribed (3)
- t_{a0}: predicted & pinned to data
- SSVD: original & modified
- shots: Vogan 3-8 & 10-12

Score Calculations

- data $\pm 1\sigma$ ("constant"); model $\pm 0.2\sigma$

Narrow band on the model elucidates trends at the cost of lowered scores.

- Modifying SSVD is more effective than thresholding the data.
- Model compatibility is very sensitive to the unknown ejecta production interval, even within the range allowed by the mass measurement uncertainty.

![Compatibility Scores: Vogan Piezo Data & RMI+SSVD Model Predictions](image)
The model compatibility score can be sensitive to undetectable changes in the measurement. We’re assessing alternate approaches and metrics.

- The compatibility score is sensitive to changes in the model inputs that shift the diagnostic prediction within the 1σ error bars.

- The score is computed from the global integral over a binary-valued function (true when the uncertainty bands overlap, false otherwise).

- A better approach might use a smoother argument, such as confidence intervals, and might think in terms of model acceptability* rather than model compatibility†.

• We started out with **good verification results** (high compatibility scores for FLAG/theory comparison), but **undesirable validation results** (low compatibility scores for theory/data comparison).

• Global properties of piezoelectric voltage data can be translated into boundary conditions for a very wide range of ejecta source models.

• The original RMI+SSVD exhibits **model-form error** because it violates these boundary conditions.

• A small modification brings the model into alignment with these conditions.

• The modification was implemented in FLAG.

• We now find **good verification results** and **excellent validation results** (very high compatibility scores for theory/data comparison).

• Further advances might come from a more nuanced consideration of metrics.