Sensitivity Analysis of Particle-In-Cell Modeling Parameters in MFiX-PIC

Avinash Vaidheeswaran1,2
Aytekin Gel1,2,3
Mary Ann Clarke1,2
William A. Rogers1

1National Energy Technology Laboratory, Morgantown, WV
2LRST, Morgantown, WV
3Alpevi LLC, Phoenix, AZ
MFiX Suite Overview (No math!)

- **DNS** (Direct Numerical Simulation): fine scale, accurate simulations for limited size domain
- **MFiX DEM** (Discrete Element Method): track individual particles and resolve collisions
- **MFiX TFM** (Two-Fluid Model): gas and solids form an interpenetrating continuum
- **MFiX PIC** (Particle-In-Cell): track parcels of particles and approximate collisions

- **ROM** (Reduced Order Models): simplified models with limited application

- **Model Uncertainty**

- **Time to Solution**

MFiX fluid solver

- Lagrangian
 - DEM
 - PIC

- Eulerian
 - TFM

Scale Levels

- **Micro-scale**
 - DNS
- **Meso-scale**
 - CFD-DEM
 - TFM
- **Macro-scale**
 - MP-PIC
 - Filtered-TFM
MFiX Suite Overview (Math!)

Fluid solver
\[
\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \frac{\partial}{\partial x_j}(\varepsilon_g \rho_g U_{gj}) = \sum_{n=1}^{N_g} R_{gn}
\]
\[
\frac{\partial}{\partial t}(\varepsilon_g \rho_g U_{gi}) + \frac{\partial}{\partial x_j}(\varepsilon_g \rho_g U_{gj} U_{gi}) = -\varepsilon_g \frac{\partial P_g}{\partial x_i} + \varepsilon_g \rho_g g_i + S_{gi}
\]

MFiX-TFM
\[
\frac{\partial}{\partial t}(\varepsilon_m \rho_m) + \frac{\partial}{\partial x_j}(\varepsilon_m \rho_m U_{mj}) = \sum_{n=1}^{N_m} R_{mn}
\]
\[
\frac{\partial}{\partial t}(\varepsilon_m \rho_m U_{mi}) + \frac{\partial}{\partial x_j}(\varepsilon_m \rho_m U_{mj} U_{mi}) = -\varepsilon_m \frac{\partial P_m}{\partial x_i} + \frac{\partial \tau_{mi} j}{\partial x_j} + \varepsilon_m \rho_m g_i + S_{mi}
\]

MFiX-DEM
\[
\frac{d m_p}{d t} = \sum_{n=1}^{N} R_n
\]
\[
\frac{d \mathbf{V}_p}{d t} = \beta (\mathbf{U}_g - \mathbf{V}_p) - \frac{1}{\rho_p} \nabla p + \mathbf{F}_c + \mathbf{g}
\]
\[
\mathbf{F}_c = \sum_j (\mathbf{F}_{n j} + \mathbf{F}_{t j})
\]

MFiX-PIC
\[
\frac{d m_p}{d t} = \sum_{n=1}^{N} R_n
\]
\[
\frac{d \mathbf{V}_p}{d t} = \beta (\mathbf{U}_g - \mathbf{V}_p) - \frac{1}{\rho_p} \nabla p - \frac{1}{\epsilon_p \rho_p} \nabla \tau_p + \mathbf{g}
\]
\[
\tau_p = \frac{P_p \epsilon_p}{\max(\epsilon_{cp} - \epsilon_p, \delta(1 - \epsilon_p))}
\]
Why PIC?

• Gas-solid flows common in industrial applications

• Limitation of Eulerian-Eulerian approach:
 • Framework to include additional phases needs several constitutive relations which increase uncertainty
 • Limitation to resolve sharp interfaces (Continuum models tend to follow gradients)

• Limitation of Eulerian-Lagrangian approach:
 • Particle count in industrial-scale systems of the order of billions, not tractable with a naïve approach such as Discrete Element Modeling

• Need for speed !!
• Framework for graphical programming using nodes and connections

• Underlying library for optimization/UQ work.

• Integrates with MFiX GUI

• For more information: https://mfix.netl.doe.gov/nodeworks/

Courtesy: Justin Weber, NETL
Surrogate modeling and analysis toolset

Design of Experiments

Model evaluation (MFiX, etc.)

Response Surface Construction

Optimization, Sensitivity, Uncertainty

Courtesy: Justin Weber, NETL
NETL VV&UQ Roadmap

Features

Survey of subject matter experts

Systematic design of experiments and simulation campaign

Tollgates for reviews, analysis and discussions with stakeholders

Validation and Uncertainty Quantification

- Define research objectives & general problem classification
- Identify and define application specific constraints
- Identify Quantities of Interest (QoI)
- Query subject matter experts (SMEs)
- Assess feedback
- Yes: Tollgate review prior to testing
- No: Revision

- Computational model setup
- Simulation Campaign design & prior tollgate review
- Campaign execution
- QA & preliminary analysis
- Analysis & Stakeholder Tollgate
- Model Bias Analysis
- Simulation Campaign
- Experimental Campaign
- Quantitative Analysis
- Next research objective

Plan overview

- **Cases selected to cover a broad range of flow conditions**
 - Particle Settling: $U/U_{mf} < 1.0$ ($P_0 \sim 1$) (Simulation campaign)
 - Bubbling Fluidized bed: $U/U_{mf} \sim 1$ ($P_0 \sim 10$)
 - Circulating Fluidized bed: $U/U_{mf} >> 1.0$ ($P_0 \sim 100$)

- **Summary of model parameters used:**

<table>
<thead>
<tr>
<th></th>
<th>I1 Pressure scale factor</th>
<th>I2 Volume fraction scale factor</th>
<th>I3 Statistical weight</th>
<th>I4 Volume fraction at maximum packing</th>
<th>I5 Solid slip velocity factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: Particle Settling</td>
<td>[1,10]</td>
<td>[2.5]</td>
<td>[3.20]</td>
<td>[0.4,0.5]</td>
<td>[0.5,1.0]</td>
</tr>
<tr>
<td>C2: Fluidization</td>
<td>[1,100]</td>
<td>[2.5]</td>
<td>[10,100]</td>
<td>[0.4,0.5]</td>
<td>[0.85,0.98]</td>
</tr>
<tr>
<td>C3: Circulating Fluidized Bed</td>
<td>[1,250]</td>
<td>[2.5]</td>
<td>[4]</td>
<td>[0.4,0.5]</td>
<td>[0.85,0.98]</td>
</tr>
</tbody>
</table>

Parameters selected based on prior sensitivity study

\[
\frac{d\bar{V}_p}{dt} = \beta (\bar{U}_g - \bar{V}_p) - \frac{1}{\rho_p} \bar{v}_p - \frac{1}{\epsilon_p \rho_p} \bar{\tau}_p + \ddot{g}
\]

\[
\tau_p = \frac{P_0 \epsilon_p^\beta}{\max(\epsilon_{cp} - \epsilon_p, \delta(1 - \epsilon_p))}
\]
Case 1: Particle Settling

Analytical Solution:

Location of shock

\[x(t) = -t \left(\frac{\varepsilon_S^* \varepsilon_g^* u_r^* - \varepsilon_{S0} \varepsilon_{g0} u_{r0}}{\varepsilon_S^* - \varepsilon_{S0}} \right) \]

Relative velocity (Stokes' drag)

\[u_r = \frac{g \Delta \rho d_p^2}{18 \mu_g} \varepsilon_g^{3.65} \]
Case 1: Particle Settling

- Model parameters
 - Pressure linear scale factor (t1)
 - Exponential factor (t2)
 - Statistical weight (t3)
 - Void fraction at packing (t4)
 - Solids slip velocity factor (t5)

- Simulation campaign having 55 simulations

- Response variable: Filling shock location (m)

- Design of experiments using Latin Hypercube Sampling with genetic algorithm
Case 1: Particle Settling

- Response surface constructed using Radial basis function
- Sobol indices show the following:
 - main effects (first order)
 - interactive effects (second order)
- Code-to-Code comparison with PSUADE

Sensitivity Analysis using Sobol Indices

3D plot of the data-fitted surrogate model
*\(t_1, t_2, t_3 \) set at nominal values
Sensitivity Analysis

Case 2: Fluidization

\[P_4, h_4 = 86.26 \text{ cm} \]

\[h_{\text{bed}} = 15.24 \text{ cm} \]

\[\Delta P_4 \]

\[P_3, h_3 = 11.11 \text{ cm} \]

\[P_2, h_2 = 6.03 \text{ cm} \]

\[P_1, h_1 = 0.56 \text{ cm} \]

\[h = 0 \text{ cm} \]

\[P_0, h_0 = -14.61 \text{ cm} \]

\[\Delta P_3 \]

\[\Delta P_2 \]

Filter

\[\text{ID} = 6.35 \text{ cm} \]
Case 2: Fluidization

3D plot of the data-fitted surrogate model (Radial Basis Function)

Sensitivity Analysis using Sobol Indices

- ΔP_2: Pressure linear scale factor, t_1, set at nominal values
- ΔP_3: Exponential factor, t_2, set at nominal values
- ΔP_4: Statistical weight, t_3, set at nominal values
- Void fraction at packing, t_4
- Solids slip velocity factor, t_5
Sensitivity Analysis

Case 3: CFB

- Material: High density polyethylene
- Particle density: 863 kg/m³
- Mean particle diameter: 871 μm
- Particle count: 800,000

References:
- Wen & Yu (AIChE 1966)
- Gidaspow (AIChE 1990)
- BVK (CES 2007)
- HKL (JFM 2001)
Sensitivity Analysis

Case 3: CFB

3D plot of the data-fitted surrogate model (Radial Basis Function)

Interface height

ΔP - Riser

ΔP - Standpipe

Sensitivity Analysis using Sobol Indices

- **t1:** Pressure linear scale factor
- **t2:** Exponential factor
- **t4:** Void fraction at packing
- **t5:** Solids slip velocity factor

ΔP, t1, t2 set at nominal values
Summary

• **Conclusions**
 - Systematic analysis of Particle-In-Cell model parameters
 - Three different operating regimes: Settling bed, Bubbling fluidized bed and Circulating fluidized bed
 - Solids slip velocity factor and void fraction at maximum packing influence settling dynamics
 - More likely to use larger values of pressure linear scale factor at higher flow rates

• **Future work**
 - Bayesian calibration of model parameters
 - Extension to reacting multiphase flows
Thank you for your attention.

Sensitivity Analysis of Particle-In-Cell Modeling Parameters used in MFIX-PIC

ACKNOWLEDGEMENT
This work was performed in support of the US Department of Energy’s Fossil Energy Crosscutting Technology Research. The work was executed through the NETL Research and Innovation Center’s Advanced Reactor Systems Program. Research performed by Leidos Research Support Team staff was conducted under the RSS contract 89243318CFE000003..

DISCLAIMER
This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Case 1: Scatter plot matrix with response variables
Case 2: Scatter plot matrix with response variables
Case 3: Scatter plot matrix with response variables