A complete set of errors for modeling and simulation

Joshua Kaizer
Nuclear Reactor Regulation
Division of Safety Systems
Nuclear Methods and Fuel Analysis

May 20, 2020
Motivation

Everyone seems to perform UQ using a different set of uncertainties.

How can you know if they have considered “all” uncertainties?
What errors/uncertainties should be quantified?

Kennedy & O’Hagan
- parameter
- model
- residual
- parametric variability
- observation error
- code

Radaideh et al.,
- parametric/input
- experimental / measured
- predictive / model discrepancy
- model form
- interpolation / statistical

D’Auria and Petruzzi
- code or model
- representation or simulation
- plant data
- “user effect”
Is there an objective way to create a set of errors?

Coleman and Steele

\[E = D - S \] \hspace{1cm} (1)

- \[\delta_S = T - S \] \Rightarrow \[S = T - \delta_S \]
- \[\delta_D = T - D \] \Rightarrow \[D = T - \delta_D \]

\[E = (T - \delta_D) - (T - \delta_S) \] \hspace{1cm} (2)

\[E = \delta_S - \delta_D \] \hspace{1cm} (3)
Error Decomposition

\[E = T - X \] (1)

Algebraically introduce a new term, \(Y \)

\[E = T - Y + Y - X \] (2)

Define new errors, \(\delta_{TY}, \delta_{YX} \)

- \(\delta_{TY} = T - Y \)
- \(\delta_{YX} = Y - X \)

\[E = \delta_{TY} + \delta_{YX} \] (3)
Total Error Equation

\[\delta_{Total} = S(I) - C_{\Delta h}(I) \]

- \(\delta_{Total} \) - the total error
- \(S(I) \) - the value of the system at the input of interest
- \(C_{\Delta h}(I) \) - the value of the real computational model at the input of interest

\[S(I) = C_{\Delta h}(I) + \delta_{Total} \]
What terms can we introduce?

\[\delta_{Total} = S(I) - C_{\Delta h}(I) \]

Recognize there are two things you can introduce:

1. Different functions (relation), \(f(\cdot) \)
2. Different Inputs, \(I_n \)

These terms \textit{define} how we look at the world.
- Terms should have wide applicability
- More terms = more precise error definitions

ASME 2020 V&V
Generic Scenario - Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(\cdot)$</td>
<td>The behavior of the system</td>
</tr>
<tr>
<td>$C_{\Delta h}(\cdot)$</td>
<td>The results of the real computational model</td>
</tr>
<tr>
<td>$M(\cdot)$</td>
<td>The results of the mathematical model</td>
</tr>
<tr>
<td>$E(\cdot)$</td>
<td>The behavior of the empirical system</td>
</tr>
<tr>
<td>$E^*(\cdot)$</td>
<td>The estimate of the behavior of the empirical system</td>
</tr>
<tr>
<td>$C_\infty(\cdot)$</td>
<td>The results of the ideal computational model</td>
</tr>
</tbody>
</table>
Generic Scenario - Inputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Input of interest</td>
</tr>
<tr>
<td>D</td>
<td>Input of Empirical data</td>
</tr>
<tr>
<td>D^*</td>
<td>Estimate of input of empirical data</td>
</tr>
<tr>
<td>I^*</td>
<td>Estimate of the input of interest</td>
</tr>
<tr>
<td>I_{CV}</td>
<td>Input of code verification associated with I</td>
</tr>
<tr>
<td>D_{CV}</td>
<td>Input of code verification associated with D</td>
</tr>
<tr>
<td>I_{SV}</td>
<td>Input of soln. verification associated with I</td>
</tr>
<tr>
<td>D_{SV}</td>
<td>Input of soln. verification associated with D</td>
</tr>
</tbody>
</table>
Example Terms

<table>
<thead>
<tr>
<th>Terms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}(I)$</td>
<td>Mathematical model at the input of interest</td>
</tr>
<tr>
<td>$\mathcal{M}(I_{CV})$</td>
<td>Mathematical model at the input used for code verification associated with I</td>
</tr>
<tr>
<td>$C_{\Delta h}(D^*)$</td>
<td>Computational model at the estimate of input of empirical data</td>
</tr>
</tbody>
</table>
Example Derivation: Verification Error

\[
\delta_{\text{Verification}}(I) = \mathcal{M}(I) - C_{\Delta h}(I) \quad (1)
\]

\[
\delta_{\text{Verification}}(I) = \mathcal{M}(I) - C_\infty(I) + C_\infty(I) - C_{\Delta h}(I) \quad (2)
\]

Define new errors, \(\delta_{\text{Code}}(I) \) and \(\delta_{\text{Solution}}(I) \)

- \(\delta_{\text{Code}}(I) = \mathcal{M}(I) - C_\infty(I) \)
- \(\delta_{\text{Solution}}(I) = C_\infty(I) - C_{\Delta h}(I) \)

\[
\mathcal{M}(I) = C_{\Delta h}(I) + \delta_{\text{Code}}(I) + \delta_{\text{Solution}}(I) \quad (3)
\]
Analyzing the Derivation for $\mathcal{M}(I)$

$$\mathcal{M}(I) = C_{\Delta h}(I) + \delta_{\text{Code}}(I) + \delta_{\text{Solution}}(I)$$

This makes sense.

But some things are missing.

- We don’t have $C_{\Delta h}(I)$, we have $C_{\Delta h}(I^*)$
- We don’t have $\delta_{\text{Code}}(I)$, we have $\delta_{\text{Code}}(I_{CV})$
- We don’t have $\delta_{\text{Solution}}(I)$, we have $\delta_{\text{Solution}}(I_{SV})$

Account for these errors… (and others)
\[\delta_{Total-CM} = \mathbb{S}(I) - C_{\Delta h}(I^*) \]

\[\delta_{Total-CM} = \delta_{\text{Applicability}}(I, D) + \delta_{\text{Measurement}}(D) + \delta_{\text{Validation}}(D, D^*) + \delta_{\text{Code}}(I_{CV}) + \delta_{\text{Solution}}(I_{SV}) - \delta_{\text{Code}}(D_{CV}) - \delta_{\text{Solution}}(D_{SV}) + \Delta_{C_{\Delta h}}(I, I^*) - \Delta_{C_{\Delta h}}(D, D^*) + \Delta_{\text{Code}}(I, I_{CV}) + \Delta_{\text{Solution}}(I, I_{SV}) - \Delta_{\text{Code}}(D, D_{CV}) - \Delta_{\text{Solution}}(D, D_{SV}) \]
Validation Errors

\[\delta_{\text{Measurement}}(D) = \mathbb{E}(D) - \mathbb{E}^*(D) \]

\[\delta_{\text{Validation}}(D, D^*) = \mathbb{E}^*(D) - C_{\Delta h}(D^*) \]
Verification Errors

\[\delta_{Code}(I) = M(I) - C_\infty(I) \]

\[\delta_{Solution}(I) = C_\infty(I) - C_{\Delta h}(I) \]

These verification errors are at the input \(I \). There are also verification errors at \(D \).
Input Errors

\[\Delta_{C_{\Delta h}}(I, I^*) = C_{\Delta h}(I) - C_{\Delta h}(I^*) \]

\[\Delta_{Code}(I, I_{CV}) = [\mathcal{M}(I) - C_\infty(I)] - [\mathcal{M}(I_{CV}) - C_\infty(I_{CV})] \]

\[\Delta_{Solution}(I, I_{SV}) = [C_\infty(I) - C_{\Delta h}(I)] - [C_\infty(I_{SV}) - C_{\Delta h}(I_{SV})] \]

These input errors are associated with input \(I \). There are also verification errors associated with input \(D \).
Applicability Error

\[\delta_{\text{Applicability}} (I, D) \]

\[= [S(I) - M(I)] - [E(D) - M(D)] \]

- Difference is the error in how well \(M \) predicts the system of interest (\(S \)) compared to how well it predicts the empirical system (\(E \))
- Tied to scaling, applicability (V&V 40), predicative capability (V&V 10)
\[
\delta_{Total-CM} = S(I) - C_{\Delta h}(I^*)
\]

\[
\delta_{Total-CM} = \delta_{Applicability}(I, D)
+ \delta_{Measurement}(D) + \delta_{Validation}(D, D^*)
+ \delta_{Code}(I_{CV}) + \delta_{Solution}(I_{SV}) - \delta_{Code}(D_{CV})
- \delta_{Solution}(D_{SV}) + \Delta_{C_{\Delta h}}(I, I^*) - \Delta_{C_{\Delta h}}(D, D^*) + \Delta_{Code}(I, I_{CV})
+ \Delta_{Solution}(I, I_{SV}) - \Delta_{Code}(D, D_{CV}) - \Delta_{Solution}(D, D_{SV})
\]
Summary

- Developed a mathematically **Complete Set of Errors**

\[\delta_{Total-CM} = S(I) - C_{\Delta h}(I^*) \]

- Set is widely applicable to modeling and simulation

- Each error is mathematically defined
Discussion