Recent Advances in Discretization Error Estimation using Error Transport Equations

Chris Roy (cjroy@vt.edu), Professor
Will Tyson, PhD Student

Kevin T. Crofton Department of Aerospace and Ocean Engineering

Virginia Tech

ASME V&V Symposium

May 3, 2017
Discretization Error (DE) is often a major source of error and uncertainty in Computational Fluid Dynamics predictions

• Adjoint methods have become the method of choice for estimating DE and allowing targeted DE reduction in functionals
 – Provide an error estimate in a single solution functional (e.g., drag)
 – Allow for solution adaptation to reduce DE in a single functional
 – Requires full implicit Jacobian and one additional (linear) solve

• Advantages of Error Transport Equations (ETE) vs. adjoints
 – Provides DE estimates in all functionals simultaneously
 – Provides DE estimates in all field variables (e.g., pressure and velocity over the domain)
 – If the full implicit Jacobian is available, requires one linear solve
Residual Methods and Truncation Error

• At the heart of residual-based error estimation is the ability to accurately quantify the truncation error

• Truncation error can be defined, using the Generalized Truncation Error Expression (GTEE), as the difference between the discrete and continuous governing equations:

 \[L_h(I^h u) = I^h L(u) + \tau_h(u) \]

 Discrete Governing Equations: \(L_h(\cdot) \)
 General Continuous Function: \(u \)
 Continuous Governing Equations: \(L(\cdot) \)
 Restriction/Prolongation Operator: \(I^h / I_h \)
 Truncation Error: \(\tau_h(\cdot) \)

• Truncation error represents higher order terms which are lost during the discretization process
Functional Error Estimation via Adjoints

• For error estimation, adjoints can be thought of as a constrained optimization problem for the functional error, subject to satisfying the discrete (or continuous) governing equations

• Consider a Taylor Series expansion of $L_h(I^h\tilde{u})$ about the discrete solution, u_h:

$$L_h(I^h\tilde{u}) = L_h(u_h) - \frac{\partial L_h}{\partial u} \bigg|_{u_h} \varepsilon_h + \frac{\partial^2 L_h}{\partial u^2} \bigg|_{u_h} \frac{\varepsilon_h^2}{2} + O(\varepsilon_h^3)$$

 – Local Discretization Error: $\varepsilon_h = u_h - I^h\tilde{u}$
 – LHS is the truncation error (needs the exact solution)
 – We estimate the truncation error by taking the numerical solution, reconstructing it to a chosen order, then inserting it into the original governing equation: $\tau_h \approx L(I_h u_h)$
Likewise, consider a Taylor Series expansion of a discrete solution functional, $J_h(\cdot)$, about the exact discrete solution, u_h:

$$J_h(I^h \tilde{u}) = J_h(u_h) - \frac{\partial J_h}{\partial u} \bigg|_{u_h} \varepsilon_h + \frac{\partial^2 J_h}{\partial u^2} \bigg|_{u_h} \frac{\varepsilon_h^2}{2} + O(\varepsilon_h^3)$$

Combining in a Lagrangian by noting the discrete equations are exactly satisfied, $L_h(u_h) = 0$:

$$J_h(I^h \tilde{u}) = \left[J_h(u_h) - \frac{\partial J_h}{\partial u} \bigg|_{u_h} \varepsilon_h + \frac{\partial^2 J_h}{\partial u^2} \bigg|_{u_h} \frac{\varepsilon_h^2}{2} + O(\varepsilon_h^3) \right]$$

$$+ \lambda^T \left[L_h(I^h \tilde{u}) + \frac{\partial L_h}{\partial u} \bigg|_{u_h} \varepsilon_h - \frac{\partial^2 L_h}{\partial u^2} \bigg|_{u_h} \frac{\varepsilon_h^2}{2} + O(\varepsilon_h^3) \right]$$

$L_h(u_h) = 0$
Background: Adjoint Methods

Functional Error Estimation via Adjoints

- Rearranging, neglecting higher order terms, and inserting the definition of truncation error:

\[
\varepsilon_{J_h} = J_h(u_h) - J_h(I^h \tilde{u}) \approx -\lambda^T \tau_h(\tilde{u}) + \left[\frac{\partial J_h}{\partial u} \bigg|_{u_h} - \lambda^T \frac{\partial L_h}{\partial u} \bigg|_{u_h} \right] \varepsilon_h + \left[-\frac{\partial^2 J_h}{\partial u^2} \bigg|_{u_h} + \lambda^T \frac{\partial^2 L_h}{\partial u^2} \bigg|_{u_h} \right] \frac{\varepsilon_h^2}{2}
\]

- The adjoint variables, \(\lambda \), can be computed by requiring the adjoint problem be identically zero such that:

\[
\left[\frac{\partial L_h}{\partial u} \bigg|_{u_h} \right]^T \lambda = \left[\frac{\partial J_h}{\partial u} \bigg|_{u_h} \right]^T
\]

- Primal Solution Residual Jacobian: \(\frac{\partial L_h}{\partial u} \bigg|_{u_h} \)

- Linearization of Functional w.r.t. Primal Solution: \(\frac{\partial J_h}{\partial u} \bigg|_{u_h} \)
Error Transport Equation (ETE)

- We seek an efficient alternative to adjoints for functional error estimation which also provides local error estimates.
- This is accomplished by deriving an ETE for the local discretization error everywhere in the domain.

- Expanding $L_h(I^h\tilde{u})$ about the discrete solution, u_h:

$$L_h(I^h\tilde{u}) = L_h(u_h) - \frac{\partial L_h}{\partial u} \bigg|_{u_h} \varepsilon_h + O(\varepsilon_h^2)$$

- By inserting the truncation error, $L_h(I^h\tilde{u}) = \tau_h(\tilde{u})$, and neglecting higher order terms, an estimate of the local error can be obtained by solving the following (linear) ETE:

$$\frac{\partial L_h}{\partial u} \bigg|_{u_h} \varepsilon_h \approx -\tau_h(\tilde{u})$$
Error Estimation

Adjoint / ETE Equivalence

• To illustrate the connection between the ETE and functional error estimation, the adjoint problem is used to rewrite the functional error estimate (minus higher order remaining error) as:

\[
\mathcal{E}_J \approx -\mathcal{L} \mathcal{H} \\
\mathcal{H} \approx \frac{\partial J_h}{\partial u} \left|_{u_h} \left[\frac{\partial L_h}{\partial u} \right]_{u_h} \right|^{-1} \tau_h(\mathcal{H})
\]

• Therefore, the functional error estimate can be viewed as either:
 – Inner product of the adjoint solution with the truncation error
 – Inner product of the ETE solution with the functional linearization
Application

Quasi-1D Nozzle

- **Computational Domain:**
 \[x \in [-1, 1] \]

- **Area Distribution:**
 \[A(x) = 1 - 0.8 e^{-12.5x^2} \]

- **Inflow Conditions:**
 - \(p_0 = 300 \text{ kPa} \)
 - \(T_0 = 600 \text{ K} \)

- **Outflow Conditions:**
 - \(p_{\text{back}} = 297.485 \text{ kPa} \)

Recent Advances in Discretization Error Estimation using Error Transport Equations
Adjoint / ETE Equivalence for Solution Functionals

Adjoint / ETE Equivalence

• Functional of Interest:
 \[J_h(u_h) = \sum_{i=1}^{N_{\text{cells}}} p_i \Delta x_i \]

• Primal Case:
 – Subsonic-Subsonic

• Truncation Error:
 – Exact TE

Recent Advances in Discretization Error Estimation using Error Transport Equations
Higher-Order Primal Solutions

Recent Advances in Discretization Error Estimation using Error Transport Equations
Higher-Order Primal Solutions

Runtime Comparison: LO + ETE vs. HO

Subsonic-Subsonic

<table>
<thead>
<tr>
<th>Grid Size (cells)</th>
<th>2(^{nd}) Order + ETE</th>
<th>4(^{th}) Order</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>10.3946</td>
<td>28.0487</td>
<td>2.6984</td>
</tr>
<tr>
<td>128</td>
<td>39.2026</td>
<td>112.6868</td>
<td>2.8745</td>
</tr>
</tbody>
</table>

Subsonic-Supersonic

<table>
<thead>
<tr>
<th>Grid Size (cells)</th>
<th>2(^{nd}) Order + ETE</th>
<th>4(^{th}) Order</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>2.7761</td>
<td>10.5769</td>
<td>3.8100</td>
</tr>
<tr>
<td>128</td>
<td>4.1059</td>
<td>15.6327</td>
<td>3.8074</td>
</tr>
</tbody>
</table>

Recent Advances in Discretization Error Estimation using Error Transport Equations
Effect of Lower Order Jacobian

Recent Advances in Discretization Error Estimation using Error Transport Equations
Global Error Estimation on Perturbed Grids

Variable: Pressure
Primal Solution: Subsonic-Supersonic
Reconstruction Order: $k = 2$

Functional: Integral of Pressure
Primal Solution: Subsonic-Supersonic
Reconstruction Order: $k = 2$

Pressure Discretization Error

Integral of Pressure

Reconstruction Order: $k = 2$

Recent Advances in Discretization Error Estimation using Error Transport Equations
Global Error Estimation on Perturbed Grids

Recent Advances in Discretization Error Estimation using Error Transport Equations
Local Error Estimation on Perturbed Grids

Recent Advances in Discretization Error Estimation using Error Transport Equations

Pressure Discretization Error

Energy Truncation Error

Grid Perturbation: $\Delta = 0.00$
Local Error Estimation on Perturbed Grids

Pressure Discretization Error

Energy Truncation Error

Grid Perturbation: $\Delta = 0.05$
Local Error Estimation on Perturbed Grids

Pressure Discretization Error

Energy Truncation Error

Grid Perturbation: $\Delta = 0.20$

Recent Advances in Discretization Error Estimation using Error Transport Equations
Conclusions

- Error transport equations (ETE) were shown to be mathematically equivalent to adjoint methods when using the same linearization and truncation error.
- ETE provide error estimates in all functionals simultaneously, as well as all local (field) quantities.
- The error estimates from ETE can be used to provide higher order functionals and local (field) quantities.
- Use of a lower order Jacobian reduces the order of the correction by one (generally from 4th order to 3rd order).
- Error estimation on perturbed (i.e., unstructured) grids is more challenging but can still provide good error estimates.
Thank You