Imagination at work.

May 18, 2016

Huijuan Dai, Mechanical Engineer
Matteo Bellucci, Lab Manager
Ade Makinde, Principal Engineer
Baljit Singh, Mechanical Engineer

ASME V&V, Las Vegas 2016
GE Today

Power & Water
Energy Management
Oil & Gas
GE Capital

Healthcare
Aviation
Transportation
Home & Business Solutions

Aligned for growth
GE Global Research

Market-focused R&D
The cornerstone of GE’s commitment to technology

- First U.S. industrial lab
- ~2000 scientists/engineers, nearly two-thirds PhDs
- One of the world’s most diversified industrial research organizations, providing innovative technology for all of GE’s businesses
- 10 locations across the globe:
 - Ann Arbor, Bangalore, Munich, Niskayuna, Shanghai, Rio de Janeiro, ...

GRC Headquarters: Niskayuna, NY
Manufacturing Modeling Lab

- **Casting**
 - Ceramic Core Injection
 - Filling & Solidification
 - Defect Formation – Freckle, porosity, ...
 - Microstructure: nucleation & growth of dendrites
 - Sand casting
 - Die casting
 - Investment casting
 - Spin Casting

- **Joining**
 - Conventional welding
 - Electron-Beam Welding
 - Inertial Friction Welding
 - Brazing
 - Laser/Hybrid Laser Welding

- **Residual Stress/Distortion**
 - Casting, welding/joining, forging, HT machining, LSP, forming...
 - Laser Shock Peening/Shot Peening
 - Ring Rolling
 - Extrusion
 - Sheet Metal Forming
 - Sheet Rolling & Roll Forming
 - Impact of TBC Coating
 - Thermal and Stress Analysis

© 2015 General Electric Company - All rights reserved
There is need to develop guidelines for manufacturing process simulation to ensure that the models are properly calibrated and validated in order to fully benefit from virtual manufacturing.
M&S Maturity Model for Manufacturing
Manufacturing Modeling: Focus Areas

Design Practice & Governance
Align Processes to the Digital Thread... new capabilities
- ↓ Cost
- ↓ New Product Introduction cycle time

MRL a critical Step in the Design Process Approval

Tools: Effective, fast and user friendly
Improves ease of Design, and affordability for Manufacturability
- ↓ Cost of Quality,
- ↓ Variable Cost Productivity,
- ↑ First Time Yield

MFG tools to be part of Blue Print

Team: Resources and Skills
Mfg Engineering skills are scarce, and a bottleneck in design process
- ↑ On Time Delivery,
- ↓ Variable Cost Productivity

Centralized Team - Supply Chain or Eng to “own” it

Significant improvement in the way we work... Enabled by the Digital Thread
M&S Implementation Challenges

Current Mfg **Tools** Immature & Difficult to Use

- Cannot Drive Process Innovations without Validated Tools

Talent Depth/Breadth in M&S Methods

- Engineering M&S Analysis-Driven Mindset must be Cultivated

Operations **Processes** Focus on Fire Fighting

- Legacy Culture will Continue to Favor Build It & Bust It

Integrated Org Tool-Talent-Process Required
Maturity Model – Tools (Technology)

M&S to Controls Capability –
Enterprise M&S Driven Decisions
Proactive approach with real time data/control

M&S – Process Optimization –
Operational M&S Assisted decisions with data from actual enterprise

M&S – Process Design support –
Expert M&S analyst driven decisions

No Models –
Empirical trial & error driven decisions

Local Know-how R&D Operational Enterprise

Cannot Drive Process Innovations without Validated M&S Tools
Maturity Model – Tools (Technology)

<table>
<thead>
<tr>
<th>Primary User of Maturity Model & M&S Tools</th>
<th>Subject Matter Experts</th>
<th>R&D Engineers</th>
<th>R&D and Process Engineers</th>
<th>Enterprise Workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>M&S Tools (Technology)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Model Representation</td>
<td>Little or no representational fidelity requirements established for the model geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's))</td>
<td>Significant assumptions of the model geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's))</td>
<td>Limited assumptions of the model geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's))</td>
<td>Real time process and quality assurance data used to refine model assumptions and develop physics based and data driven reduced order models</td>
</tr>
<tr>
<td>Process Physics Fidelity</td>
<td>Empirical data-driven models and/or judgment used to define important manufacturing process parameters in the enterprise</td>
<td>Some physics based models exist for the manufacturing process of interest in the enterprise</td>
<td>Suite of physics based models exist for the manufacturing process of interest in the enterprise</td>
<td>Real time predictions of physics based process performance enable enterprise decisions made within process takt time</td>
</tr>
<tr>
<td>Code/Algorithm/Model Integration</td>
<td>Minimal or no testing of any commercial off the shelf (COTS) or custom software elements with little or no configuration management procedures specified or followed</td>
<td>Source code and algorithms are either COTS software or managed by configuration management procedures with limited comparisons to established algorithm benchmarks</td>
<td>Customized and/or modified algorithms are tested and compared to benchmark data and/or solutions to determine impact on numerical convergence and physics</td>
<td>Integration of M&S algorithms with machine controls and multi-physics data fusion</td>
</tr>
<tr>
<td>Simulation Verification</td>
<td>Modeling assumptions have an unknown effect on the accuracy and/or precision of the numerical process model predictions</td>
<td>Numerical, discretization, and model assumption induced errors qualitatively estimated based on process model input/output for each use case</td>
<td>Numerical, discretization, and model assumption induced errors quantitatively estimated across validation envelope and used to establish M&S best practices</td>
<td>Real time comparison of M&S predictions with process data</td>
</tr>
<tr>
<td>Simulation Validation</td>
<td>Judgment and/or limited experimental manufacturing process data exists to validate process model predictions</td>
<td>Industry standard M&S use cases and benchmark experimental data sets exist and used to calibrate process models at one or more distinct validation points</td>
<td>Data from actual enterprise and/or supplier manufacturing processes used to calibrate process model predictions and establish process validation envelopes</td>
<td>M&S predictions are used to adapt process parameters for real time quality control</td>
</tr>
<tr>
<td>Simulation Uncertainty Quantification</td>
<td>Model prediction uncertainties and sensitivities to key input parameters are not assessed as part of the simulation</td>
<td>Prediction uncertainties inferred from benchmark experimental use case validation data with limited sensitivity studies conducted for key parameters</td>
<td>Prediction uncertainties segregated and propagated by source (geometry, material properties, and process conditions (parameters, initial conditions (IC's), and/or boundary conditions (BC's)) etc.) with detailed sensitivity analyses conducted</td>
<td>Uncertainty and confidence estimates made for all M&S predictions using physics based data-driven reduced order models</td>
</tr>
</tbody>
</table>
Maturity Model - Procedures & Methods

M&S Integrated to Brilliant Enterprise –
Digital twin simulations with real time process control
App type software/automated apps/root cause corrective action

M&S – Process Optimization –
Standard work
Automated set-up/standard evaluation metrics/formal tutorials

M&S – Process Design support –
Experts justification
Informal guidelines/limited case studies

No Models –
Case by case
No guidelines/tutorials

Local Know-how R&D Operational Enterprise

Technology Adoption

Procedures and Methods to Enable non-Expert M&S Use
Guidelines for Manufacturing M&S Applications and Value
Maturity Model - Procedures & Methods

<table>
<thead>
<tr>
<th>Primary User of Maturity Model & M&S Tools</th>
<th>Subject Matter Experts</th>
<th>R&D Engineers</th>
<th>R&D and Process Engineers</th>
<th>Enterprise Workforce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Trial & Error Driven Decisions</td>
<td>Maturity Level 0</td>
<td>Maturity Level 1</td>
<td>Maturity Level 2</td>
<td>Maturity Level 3</td>
</tr>
<tr>
<td>M&S used for Manufacturing</td>
<td>M&S used for Manufacturing</td>
<td>M&S used for Manufacturing</td>
<td>M&S used for Manufacturing</td>
<td>M&S Integrated Into</td>
</tr>
</tbody>
</table>

M&S Procedures & Methods (Standard Work)

<table>
<thead>
<tr>
<th>Physics-Based Model Selection</th>
<th>Little or no criteria exist to aide in the determination of the appropriate level of M&S fidelity required for process modeling</th>
<th>Analyst expert knowledge used to determine the appropriate fidelity required for physics based M&S of manufacturing process design problems</th>
<th>Decision criteria to aide with the matching of physics based M&S fidelity to families of manufacturing process design problems have been developed as standard work</th>
<th>Digital twin simulations used to establish decision criteria for real time process control what-ifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Set-Up & Execution</td>
<td>No analysis or simulations performed ad hoc using software manuals and software tutorials on a case by case basis by M&S non expert users</td>
<td>Informal guidelines developed by M&S expert analysts used to guide manually intensive analysis set-up and execution</td>
<td>Standard work defined that enables non-expert users to apply M&S to problems with automated analysis set-up scripts and/or interfaces streamline model development</td>
<td>App type software enables enterprise workforce to apply physics based M&S as a tool to solve production problems</td>
</tr>
<tr>
<td>Result Interpretation</td>
<td>Judgement and/or subject matter expert knowledge used to interpret M&S results and determine if solutions are correct</td>
<td>Analyst expert knowledge used to determine numerical and physical validity of predictions based on M&S analyses of similar manufacturing processes</td>
<td>Standard metrics used to evaluate M&S results and determine the validity of predictions based on best practices and lessons learned of similar processes</td>
<td>Automated apps used to compare M&S predictions with real time process data and provide closed loop feedback to process</td>
</tr>
<tr>
<td>Application Tutorial Development</td>
<td>Applications for M&S software and associated tutorials are limited to those that came with the COTS M&S software</td>
<td>Limited enterprise case studies documented to illustrate how physics based M&S software has been applied to solve example manufacturing process problems</td>
<td>Numerous enterprise case studies compiled into formal tutorials to illustrate how to apply physics based M&S tools to solve a variety of manufacturing process problems</td>
<td>Tutorials describe applications of physics based M&S to assist with enterprise root cause corrective action (RCCA) activities to eliminate manufacturing defects</td>
</tr>
</tbody>
</table>
Maturity Model: a Tool to Help Develop Business Roadmaps

M&S Career Path with Control Titles -
- M&S skill set criteria for key leadership positions/development
- Assist manufacturing management activities
- Physical to virtual environment

M&S - Dedicated Department -
- Responsible M&S Ownership with necessary skills
- Support NPIs/Product & process quality control

M&S - R&D Pilot Areas -
- Individual experts on projects/Evaluate NPIs
- Validated data for production user cases

No Function -
- Self-trained/Limited application/Limited ownership

Capability Maturity Level
- Local Know-how
- R&D
- Operational
- Enterprise

Tribal Knowledge
- Optimized
- Integrated

Technology Adoption
Manufacturing M&S Skill Set Competencies need to be Defined

Engineering M&S Analysis-Driven Mindset must be Cultivated

Workforce M&S Learning Curve will Follow S-Curve Trajectory
Discussion and Conclusions

CMMI Framework Leveraged to Define Thread Focus Areas

Maturity Level Themes Refined to Drive Org Transformation

Sub-Thread Focus Refined to Accelerate Org M&S Adoption

Work with V&V Committee to Partner with Businesses and Academia to benchmark capabilities