V&V Challenge Problem: An efficient Monte Carlo method incorporating the effects of model error

Michael D. Shields, Kirubel Teferra, Hwanpyo Kim
Dept. of Civil Engineering
Johns Hopkins University
Meet the Team

Hwanpyo Kim
1st Year Ph.D. Student
Dept. of Civil Engineering
Johns Hopkins University
Education:
 M.S. Civil Engineering – University of Seoul, 2013
 B.S. Civil Engineering – University of Seoul, 2011

Kirubel Teferra
Postdoctoral Fellow
Dept. of Civil Engineering
Johns Hopkins University
Experience:
 Research Engineer – Weidlinger Associates, 2011-2013
Education:
 Ph.D. Civil Engineering & Engineering Mechanics, Columbia University, 2011
 M.S. Civil Engineering, University of California – Berkeley, 2006
 B.S. Civil Engineering & Engineering Mechanics, Columbia University, 2003
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data

Validation

Computational Model
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Computational Model
- Error
- Uncertainty

Validation
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
 - Error
 - Uncertainty

Computational Model
 - Error
 - Uncertainty

Validation

1
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Computational Model
- Error
- Uncertainty

Validation
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data

Error
Uncertainty

Computational Model

Error
Uncertainty
Reliability Analysis
Prediction

Validation

①
②
③
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Computational Model
- Error
- Uncertainty
- Reliability Analysis
- Prediction

Validation
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data

Uncertainty

Error

Validation

Computational Model

Error

Uncertainty

Probabilistic Quantification

Reliability Analysis

Prediction

ASME Verification & Validation Symposium
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data

Computational Model

Error
Uncertainty

Error
Uncertainty

Probabilistic Quantification

Prediction with Uncertainty

Validation

Prediction
Reliability Analysis
Data & Model Uncertainty

Model Validation & Prediction under uncertainty

① Calibration of Uncertain Parameters

Experimental Data

- Error
- Uncertainty

Computational Model

- Error
- Uncertainty

ASME Verification & Validation Symposium
Material Characterization

- Legacy material specs. are available
 - These are taken lightly
 - No testing, tolerances, etc.
- Material testing performed on specimens from a single tanks (compute \(E, \nu, T \))
 - Samples taken from 10 locations
 - Spatial variability exists in material parameters
 - Particularly in tank wall thickness \(T \)
 - Significant **epistemic** uncertainty
 - Is this tank representative of the other tanks?
 - Tanks vary in age.
 - Were all tanks constructed at the same facility, with the same batch material, etc.?
- Very few data points
- This tank also failed
 - Is this tank weaker than others? …Probably
Material Characterization

- Test is treated as “representative” of material behavior
 - Assume Normal distribution
 - This is believed to be a conservative estimate
 - Material tests suggest this tank is weaker than specs.
 \[\langle E \rangle = 2.8141E + 07 \text{ psi} < E_{\text{legacy}} = 3.0E + 07 \text{ psi} \]
 \[\langle T \rangle = 0.23132 \text{ in.} < T_{\text{legacy}} = 0.25 \text{ in.} \]
 - Computational model accepts only one parameter value:
 - Spatial variability cannot be accounted for
 - Randomly drawn values are attributed to the entire tank
 - This tank failed!

- Material testing of at least one additional tank is highly recommended
Tank Dimensions

• Again, legacy specs. are provided
 – These are again taken lightly

• Tank dimensions are given for Tanks 1 & 2:
 – Data is said to be “very accurate”
 – This is useful in determining “best fit” model parameters
 • Explicitly use for pressure loading test on Tanks 1 & 2.
 • Probability model used for Tanks 3 – 6
 – Small dataset (2 tanks, 5 measurements per tank) = high epistemic uncertainty
 – Normal Distribution

• Probability model appears to be conservative
 – Both measured tanks are greater in length & radius than legacy specifications
 – Spatial variability cannot be factored into the model
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Computational Model
- Error
- Uncertainty

Validation

② Model validation and calibration
Construction of “Best Fit” Model

• Match a subset of the data
 – Use the remaining data as validation

• Identify the combination of model input parameters that best matches the test data:
 – E, ν, T, R, L, and P
 • Material parameters & thickness are bounded by $\pm 3\sigma$ from test data
 • R, L data correspond to the tanks that were tested
 – Displacement readings have HUGE uncertainty & inconsistency
 • This will be dealt with separately
Use simulated annealing to identify “best fit” parameters

1. Randomly initialize the 6 parameters
 - E, ν, T, R, L, and P

2. Run simulation and compute error
 \[\varepsilon = \sqrt{\sum_{i=1}^{N_p} \sum_{j=1}^{N_s} \sum_{k=1}^{N_T} (d_{ijk}^{\text{sim}} - d_{ijk}^{\text{exp}})^2} \]

3. Randomly select a parameter and perturb it

4. Rerun simulation and compute error
 1. If error is improved, accept the perturbation
 2. If error is worse, reject the perturbation with 95% probability
 - Note, this is not a “variable temperature” implementation but such implementation could improve computational expense in the future
“Best Fit” Model

![Graph showing iteration numbers vs. L2 norms and pressure vs. displacement for Tank 1.](image)
Computational Expense

- Simulated Annealing can be computationally quite expensive
 - Perform this on the low resolution model
 - Need ~500 iterations
 - SA cannot be parallelized

\[12 \text{ CPU-hrs} \times 2 \text{ Sims/Iter} \times 500 \text{ Iter} = 12,000 \text{ hrs!!!} \]
• Simulated Annealing can be computationally quite expensive
 – Perform this on the low resolution model
 – Need ~500 iterations
 – SA cannot be parallelized

\[12 \text{ CPU-hrs} \times 2 \text{ Sims/Iter} \times 500 \text{ Iter} = 12,000 \text{ hrs!!!} \]

Parallelize

\[12 \text{ CPU-hrs} \times 500 \text{ Iter} = 6,000 \text{ hrs!} \]
Computational Expense

- Simulated Annealing can be computationally quite expensive
 - Perform this on the low resolution model
 - Need ~500 iterations
 - SA cannot be parallelized

\[
12 \text{ CPU-hrs} \times 2 \text{ Sims/Iter} \times 500 \text{ Iter} = 12,000 \text{ hrs}!!
\]

Parallelize

\[
12 \text{ CPU-hrs} \times 500 \text{ Iter} = 6,000 \text{ hrs}!
\]

Parallelize??

\[
1 \text{ hr} \times 500 \text{ Iter} = 500 \text{ hrs}
\]
Computational Expense

• 500 hours is still 3 full weeks of computation!
• We can further reduce computational cost
 1. Sensitivity Analysis
 • Reduces stochastic dimension
 – Sensitivity to L appears to be smaller than others
 2. E and v are correlated (data shows $p \approx 0.7$)
 • Principal Component Analysis can reduce this to a single variable (with small error)
 3. Pressure can be prescribe rather than randomized (not a model parameter per se)
 • Uncertainty in pressure treated elsewhere
• Reduced set of 2-3 random variables

\[
12 \text{ CPU-hrs} \times 50 \text{ Iter} = 600 \text{ hrs}
\]

Parallelize??

\[
1 \text{ hr} \times 50 \text{ Iter} = 50 \text{ hrs}
\]
Computational Expense

- 500 hours is still 3 full weeks of computation!
- We can further reduce computational cost
 1. Sensitivity Analysis
 - Reduces stochastic dimension
 - Sensitivity to L appears to be smaller than others
 2. E and v are correlated (data shows $\rho \approx 0.7$)
 - Principal Component Analysis can reduces this to a single variable (with small error)
 3. Pressure can be prescribe rather than randomized (not a model parameter per se)
 - Uncertainty in pressure treated elsewhere
- Reduced set of 2-3 random variables

$$12 \text{ CPU-hrs} \times 50 \text{ Iter} = 600 \text{ hrs}$$

Parallelize??

$$1 \text{ hr} \times 50 \text{ Iter} = 50 \text{ hrs}$$

Much more reasonable
Computational Expense

- 500 hours is still 3 full weeks of computation!
- We can further reduce computational cost
 1. Sensitivity Analysis
 - Reduces stochastic dimension
 - Sensitivity to L appears to be smaller than others
 2. E and ν are correlated (data shows $\rho \approx 0.7$)
 - Principal Component Analysis can reduce this to a single variable (with small error)
 3. Pressure can be prescribed rather than randomized (not a model parameter per se)
 - Uncertainty in pressure treated elsewhere
- Reduced set of 2-3 random variables

\[
12 \text{ CPU-hrs} \times 50 \text{ Iter} = 600 \text{ hrs}
\]

Parallelize??

\[
1 \text{ hr} \times 50 \text{ Iter} = 50 \text{ hrs}
\]

Much more reasonable
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Validation

Computational Model
- Error
- Uncertainty

Reliability Analysis
- Prediction

- Performed using newly developed Targeted Random Sampling Method for efficient Monte Carlo reliability analysis
 - Samples heavily in near the limit state
 - Rooted in stratified sampling design
 - Consider this a “black box” here
 - Produces a model reliability prediction

③ Computational reliability analysis
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Computational Model
- Error
- Uncertainty

Validation

④ Experimental data error analysis

Prediction

Reliability Analysis
Data Error & Uncertainty

• Displacements are stated to be accurate to within ±3% or 0.002 in. – whichever is greater.
 – This is a very large range (same order of magnitude as the data itself in some cases)

• Pressure measured is within ±5% of the absolute pressure
Data Error & Uncertainty

• Displacements are stated to be accurate to within ±3% or 0.002 in. – whichever is greater.
 – This is a very large range (same order of magnitude as the data itself in some cases)

• Pressure measured is within ±5% of the absolute pressure
Data Error & Uncertainty

- Displacements are stated to be accurate to within ±3% or 0.002 in. – whichever is greater.
 - This is a very large range (same order of magnitude as the data itself in some cases)
- Pressure measured is within ±5% of the absolute pressure
Data Error & Uncertainty

• Displacements are stated to be accurate to within ±3% or 0.002 in. – whichever is greater.
 – This is a very large range (same order of magnitude as the data itself in some cases)
• Pressure measured is within ±5% of the absolute pressure
Data Error & Uncertainty

- Displacements are stated to be accurate to within ±3% or 0.002 in. – whichever is greater.
 - This is a very large range (same order of magnitude as the data itself in some cases)

- Pressure measured is within ±5% of the absolute pressure
Data Error

• Displacement data error is very large in general
• There is inconsistency with the data and the error specifications at high pressure
Data Error

• Displacement data error is very large in general
• There is inconsistency with the data and the error specifications at high pressure

What could have happened?
Data Error

- Displacement data error is very large in general
- There is inconsistency with the data and the error specifications at high pressure

What could have happened?

- Human error
- Defective gauge
- Etc.
Data Error

• Displacement data error is very large in general
• There is inconsistency with the data and the error specifications at high pressure

What could have happened?

• Human error
• Defective gauge
• Etc.

This is life! What do we do?
Data Error

- Displacement data error is very large in general
- There is inconsistency with the data and the error specifications at high pressure

What could have happened?

- Human error
- Defective gauge
- Etc.

This is life! What do we do?

- Identify bad data and systematically remove it
- Recognize that our model inherits this error!
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data
- Error
- Uncertainty

Computational Model
- Error
- Uncertainty

Probabilistic Quantification
- Reliability Analysis
- Prediction

5) Quantification of model error
Quantifying Model Error

• Model error defined at location i as follows:

$$\varepsilon_i = \frac{d_{i}^{\text{best}} - d_{i}^{\text{exp}}}{d_{\text{rms}}}$$

$$d_{\text{rms}} = \sqrt{\frac{1}{N_p} \sum_{i=1}^{N_p} (d_{i}^{\text{best}})^2}$$

• We construct an empirical distribution for ε_i utilizing all available test data and the associated “best fit” models

• Note, d_{i}^{best} is computed using the high fidelity model
 – Requires one model run for each set of test data
Model Error Transformation

• Model errors are quantified in terms of radial displacements.
• We want model error in terms of stress.

\[
\begin{align*}
 u(x, \phi) &= \sum_{m=1,3,5,...,M} \sum_{n=0,1,2,...,N} A_{mn} \cos(n\phi) \cos\left(\frac{m\pi x}{l}\right) \\
 v(x, \phi) &= \sum_{m=1,3,5,...,M} \sum_{n=0,1,2,...,N} B_{mn} \sin(n\phi) \sin\left(\frac{m\pi x}{l}\right) \\
 w(x, \phi) &= \sum_{m=1,3,5,...,M} \sum_{n=0,1,2,...,N} C_{mn} \cos(n\phi) \sin\left(\frac{m\pi x}{l}\right)
\end{align*}
\]
Model Error Transformation

• Model errors are quantified in terms of radial displacements

• We want model error in terms of stress

\[
\begin{align*}
 u(x, \phi) &= \sum_{m=1,3,5,\ldots,M} \sum_{n=0,1,2,\ldots,N} A_{mn} \cos(n\phi) \cos\left(\frac{m\pi x}{l}\right) = 0 \\
 v(x, \phi) &= \sum_{m=1,3,5,\ldots,M} \sum_{n=0,1,2,\ldots,N} B_{mn} \sin(n\phi) \sin\left(\frac{m\pi x}{l}\right) = 0 \\
 w(x, \phi) &= \sum_{m=1,3,5,\ldots,M} \sum_{n=0,1,2,\ldots,N} C_{mn} \cos(n\phi) \sin\left(\frac{m\pi x}{l}\right) + \tilde{w}(x, \phi)
\end{align*}
\]

Stochastic field perturbation
Model Error Transformation

• Model errors are quantified in terms of radial displacements

• We want model error in terms of stress

\[
\begin{align*}
 u(x, \phi) &= \sum_{m=1,3,5,...,M} \sum_{n=0,1,2,...,N} A_{mn} \cos(n\phi) \cos\left(\frac{m\pi x}{l}\right) = 0 \\
 v(x, \phi) &= \sum_{m=1,3,5,...,M} \sum_{n=0,1,2,...,N} B_{mn} \sin(n\phi) \sin\left(\frac{m\pi x}{l}\right) = 0 \\
 w(x, \phi) &= \sum_{m=1,3,5,...,M} \sum_{n=0,1,2,...,N} C_{mn} \cos(n\phi) \sin\left(\frac{m\pi x}{l}\right) + \tilde{w}(x, \phi)
\end{align*}
\]

Stochastic field perturbation

• The distribution of stress is computed from \(\tilde{w}(x, \phi)\)
Overall Process

Model Validation & Prediction under uncertainty

Experimental Data

Computational Model

Error
Uncertainty

Error

Uncertainty
Probabilistic Quantification

Prediction

Model Inherits Exp. Error

Load variation imposed on prediction

Prediction with Uncertainty

Stochastic Stress Field

Targeted Random Sampling

Reliability Analysis

Prediction

ASME Verification & Validation Symposium