CFD Validation vs. PIV Data Using Explicit PIV Filtering of CFD Results

Laura Campo, Ivan Bermejo-Moreno, and John Eaton

ASME V&V Symposium
22-24 May 2013
Las Vegas, NV
Motivation

- Comparisons between PIV data & CFD results are often necessary for code validation
Motivation

• Comparisons between PIV data & CFD results are often necessary for code validation
Motivation

• Comparisons between PIV data & CFD results are often necessary for code validation
Motivation

• Comparisons between PIV data & CFD results are often necessary for code validation

• PIV experiments and CFD simulations are subject to different bias/uncertainty sources, so how do we know if the agreement is good enough?
Motivation

• **Challenge:**
 – De-convolving & quantifying biases in experimental data is hard
 – Often these biases strongly depend on local flow features
 – PIV experiments usually report a single uncertainty value

• **New approach:** simulate PIV biases onto CFD results
 – What flow field would you get if you used PIV to measure the flow field predicted by CFD?
 – Compare the modified CFD result to experimental data
Motivation

• **Challenge:**
 – De-convolving & quantifying biases in experimental data is hard
 – Often these biases strongly depend on local flow features
 – PIV experiments usually report a single uncertainty value

• **New approach:** simulate PIV biases onto CFD results
 – What flow field would you get if you used PIV to measure the flow field predicted by CFD?
 – Compare the modified CFD result to experimental data
Motivation

• **Challenge:**
 – De-convolving & quantifying biases in experimental data is hard
 – Often these biases strongly depend on local flow features
 – PIV experiments usually report a single uncertainty value

• **New approach:** simulate PIV biases onto CFD results
 – What flow field would you get if you used PIV to measure the flow field predicted by CFD?
 – Compare the modified CFD result to experimental data

![Graphs showing comparison of simulated and experimental data](image)
PIV Data Acquisition

- **PIV Overview**
 - Laser
 - Camera & optics
 - Mirror & optics

- **Modeling PIV Biases**
- **Results/Conclusions**

PIV Data Acquisition Process

- Seeded flow

Diagram

- Timing box
- Computer
- Image at t
- Image at $t + \Delta t$
PIV Data Acquisition

PIV Overview

Modeling PIV Biases

Results/Conclusions
PIV Data Acquisition

- **Motivation**
- **PIV Overview**
- **Modeling PIV Biases**
- **Results/Conclusions**
Main Sources of PIV Bias

• Spatial averaging: high speed flows
Main Sources of PIV Bias

- **Spatial averaging**: high speed flows
 - Finite size of interrogation regions
 - Particle travel between image frames

![Interrogation Region A](image1)

![Interrogation Region B](image2)
Main Sources of PIV Bias

• **Spatial averaging:** high speed flows
 – Finite size of interrogation regions
 – Particle travel between image frames
Main Sources of PIV Bias

- **Spatial averaging**: high speed flows
 - Finite size of interrogation regions
 - Particle travel between image frames
Main Sources of PIV Bias

• **Spatial averaging:** high speed flows
 – Finite size of interrogation regions
 – Particle travel between image frames
Main Sources of PIV Bias

- **Spatial averaging**: high speed flows
 - Finite size of interrogation regions
 - Particle travel between image frames

- **Particle inertia**: large $\mathbf{U} \cdot \text{grad}(\mathbf{U})$
Finite Size of Interrogation Regions

- Chop up CFD domain into areas corresponding to the size of the PIV interrogation regions (IRs)
- **Spatially average** all CFD “samples” within each IR (downsampling to a coarser grid)
• Determine average velocity \((U_A, V_A)\) in Frame A
• Sweep out approximate trajectory \((U_A dt, V_A dt)\)
• Determine average velocity \((U_A, V_A)\) in Frame A
• Sweep out approximate trajectory \((U_A dt, V_A dt)\)
• Spatially average all CFD “samples” within the region & assign velocity vector to center of Frame A
• Sample CFD dataset at N locations within IR
- Sample CFD dataset at N locations within IR
- Integrate streamlines originating at sample points over Δt
 - Each path leads to one velocity sample for that IR
 - For higher fidelity, integrate inertial particle paths
• Sample CFD dataset at N locations within IR
• Integrate streamlines originating at sample points over Δt
 • Each path leads to one velocity sample for that IR
 • For higher fidelity, integrate inertial particle paths
Particle Travel & Sampling

- Sample CFD dataset at N locations within IR
- Integrate streamlines originating at sample points over Δt
 - Each path leads to one velocity sample for that IR
 - For higher fidelity, integrate inertial particle paths

$$U = \frac{1}{N\Delta t} \sum_{i=1}^{N} (X_{i,final} - X_{i,initial})$$
Test Case

- Shock boundary layer interaction
 - $U_\infty = 525$ m/s
 - Large gradients
 - Boundary layers
 - High resolution PIV
 - LES of same case

![Diagram showing velocity profile with color gradient indicating flow characteristics.](image)
Test Case

- Shock boundary layer interaction
 - $U_\infty = 525$ m/s
 - Large gradients
 - Boundary layers
 - High resolution PIV
 - LES of same case

- Assume particles track flow exactly at domain inlet
 - Good assumption since inlet flow has $v \approx 0, \nabla u \approx 0$

- Expect particle paths to deviate from streamlines in regions where $U \cdot \nabla U$ is large
Implementation – Step 1

• Solve for particle paths throughout domain
 – Use a very fine rake of points at inlet
 – Implemented using RK4 solver with time step such that max particle travel per step is $|\Delta \mathbf{X}| \approx 10 \mu m$
 – Interpolate onto CFD grid to find particle velocity field

Displaying 5% of total paths computed
Implementation – Step 1

• Solve for particle paths throughout domain
 – Use a very fine rake of points at inlet
 – Implemented using RK4 solver with time step such that max particle travel per step is $|\Delta X| \approx 10 \mu m$
 – Interpolate onto CFD grid to find particle velocity field

displaying 5% of total paths computed
Implementation – Step 1

- Solve for particle paths throughout domain
 - Use a very fine rake of points at inlet
 - Implemented using RK4 solver with time step such that max particle travel per step is $|\Delta \mathbf{X}| \approx 10 \mu m$
 - Interpolate onto CFD grid to find particle velocity field

Displaying 5% of total paths computed
• Solve for particle paths throughout domain
 – Use a very fine rake of points at inlet
 – Implemented using RK4 solver with time step such that max
 particle travel per step is $|\Delta \mathbf{x}| \approx 10 \mu m$
 – Interpolate onto CFD grid to find particle velocity field

$$|U_{\text{particle}} - U_{\text{fluid}}| \text{ [m/s]}$$
Implementation – Step 2

• Apply filtering scheme for each PIV interrogation region
 – Sample & integrate trajectories over PIV inter-frame time, for our case $\Delta t = 800\,ns$
 • Integrate particle velocity field \rightarrow particle paths
 • Integrate fluid velocity field \rightarrow streamlines (particles w/ no inertia)
 – Can easily apply multiple filters to determine effects of varying PIV resolution
Incident Shock PIV/LES comparison

LES

PIV

LES + PIV bias (inertia)

LES + PIV bias (no inertia)

Motivation PIV Overview Modeling PIV Biases Results/Conclusions
Incident Shock PIV/LES comparison

LES

LES + PIV bias (inertia)

LES + PIV bias (no inertia)

PIV
Profile Comparisons

x = 25mm

Streamwise Velocity

Wall-Normal Velocity

Lesion

LES + PIV bias (no inertia)

LES + PIV bias (inertia)
Profile Comparisons

$x = 25\text{mm}$

Streamwise Velocity

Wall-Normal Velocity

- LES
- LES + PIV bias (no inertia)
- LES + PIV bias (inertia)
- PIV data
Profile Comparisons

$x = 30\text{mm}$

Streamwise Velocity

Wall-Normal Velocity

- LES
- LES + PIV bias (no inertia)
- LES + PIV bias (inertia)
Profile Comparisons

x = 30mm

Streamwise Velocity

Wall-Normal Velocity

- LES
- LES + PIV bias (no inertia)
- LES + PIV bias (inertia)
- PIV data
Conclusions

• Technique gives estimate of PIV bias errors that are dependent on local flow features
 – PIV bias can be significant in high speed flows with shock waves
 – Useful for both experimental and numerical studies
 – Allows for better comparisons between PIV experiment and CFD

• Procedure is general -- can be applied to any CFD simulation result that is to be validated using PIV data
Questions?

$$|U_{\text{particle}} - U_{\text{fluid}}| \; [\text{m/s}]$$

CONTACT INFORMATION:
Laura Campo
PhD Candidate, Mechanical Engineering
Stanford University
lcampo@stanford.edu