Filtering and Surface Texture

Mark C. Malburg, Ph.D.
www.DigitalMetrology.com
www.BeARockstarEngineer.com

What do you mean when you say “roughness”?
Roughness?
Roughness?

Roughness?

Digital Metrology Solutions
Copyright 2012
Digital Metrology Solutions, Inc.
Roughness

- We have an intuitive “feel” for roughness and waviness
 - Roads, tables, walls, deserts, floors, etc.

Filtering

Books on a Table

- Long Wavelength
 - U-shaped
 - “Waviness” from the load

- Middle Wavelength
 - “Waviness” from lamination and adhesive thickness variations

- Short Wavelength
 - “Roughness” from the laminate texture
Filtering

- The wavelength content can be graphed
 - Mathematical terms: Fourier Transform

Books on a Table

![Graph showing the wavelength content with categories: Roughness, Waviness, and Form.]

Filters “Separate”

![Graphs showing Waviness and Roughness profiles.]

- Waviness Profile
- Roughness Profile
Gaussian Filtering

• A Gaussian-weighted moving average.

How much filtering?

Weighted, Moving Average

Waviness
Same Data Different Results

Waviness profile (red)

Long cutoff = “smooth” waviness
“higher” roughness

Roughness profile (blue)

Short cutoff = “bumpy” waviness
“smoother” roughness

What does this mean?

0.5

Note: this indication is not in accordance with ISO 1302-2002
Ra = 0.167 µm

Ra = 0.229 µm
Ra = 0.307 µm

Ra = 0.568 µm
Ra = 0.975 µm

Ra = 1.106 µm
What is the roughness?

- Ra = 0.167 µm
- Ra = 0.229 µm
- Ra = 0.307 µm
- Ra = 0.568 µm
- Ra = 0.975 µm
- Ra = 1.016 µm

Ra = 0.167 µm
Ra = 0.229 µm

Ra = 0.307 µm
Ra = 0.568 µm

Ra = 0.975 µm
Ra = 1.106 µm

Avoid the problem!

- Look at Primary/Waviness Profiles
- not Roughness Profiles
4.4 Roughness Cutoff or Sampling Length

Standard ratings are listed in Section 9 of ASME B46.1 with some selection criteria given in Section 3 of ASME B46.1. Drawings prepared six months after the date of issuance of ASME B46.1-1995 shall state the roughness cutoff or sampling length in position “c” of Fig. 3.

NOTE: Prior to the adoption of ASME B46.1-1995 the default rating was 0.8 mm if no other rating was stated.

ISO 1302-2002

- Upper (U) or lower (L) limit
- Transmission band (mm)
- Evaluation length
- Limit value (µm)

U “Gauss” 0.0025-0.8 / Ra5max 0.5
Typical Filter Cutoff Values

How do you choose?
Choose Wisely!

- Primary with Waviness:
 Does the filter “fit” your “function?”

![Wavelength Content Graph](image)

Choose Wisely!

- Wavelength Content Graph
Choose Wisely!

- Tables

<table>
<thead>
<tr>
<th>Non-Periodic Profiles</th>
<th>Cutoff Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Roughness (Ra)</td>
<td></td>
</tr>
<tr>
<td>μm</td>
<td>λp (μm)</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodic Profiles</th>
<th>Cutoff Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Spacing (λp)</td>
<td></td>
</tr>
<tr>
<td>μm</td>
<td>λp (μm)</td>
</tr>
<tr>
<td>0.019</td>
<td>0.04</td>
</tr>
<tr>
<td>0.040</td>
<td>0.15</td>
</tr>
<tr>
<td>0.130</td>
<td>0.40</td>
</tr>
<tr>
<td>0.400</td>
<td>1.30</td>
</tr>
<tr>
<td>1.000</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Choose Wisely!

- Just because the surface is short. Don’t shorten the cutoff!!!
Short Surfaces / Spline Filters

\[\lambda_c: 0.25 \text{ mm} \]
\[Ra: \ 0.85 \mu m \]
\[Wt: \ 6.52 \mu m \]

\[\lambda_c: 0.8 \text{ mm} \]
\[Ra: \ 1.16 \mu m \]
\[Wt: \ 4.29 \mu m \]

Gaussian Filters Lose Ends

• Due to the “moving average” Gaussian filters lose the ends of the profile.
Spline Filtering Keeps Ends

- Spline filters use an equation not a moving average. Ends are not lost.

Two Flavors of Splines

- **“Form Following”**
 - (Tension = 0.0)
 - Overshoots: false peaks/valleys

- **“Gaussian-like”**
 - (Tension = 0.625242)
 - Poor edge following
Bandpass Roughness

![Graph showing 300:1 Bandwidth]

Sorting out Wavelengths

![Graph showing Roughness, Waviness, and Form]

Copyright 2010 - Digital Metrology Solutions, Inc.
Terminology

- **Long Pass**
- **Short Pass**

Surface Texture Filter

ASME B46.1 Webinar

- \(\lambda_a \) "Short" Cutoff
- \(\lambda_r \) "Roughness" Cutoff
- \(\lambda_f \) "Form" Cutoff

(Typically 2.5 µm or 8.0 um) (Typically 0.8 mm or 2.5 mm) (Optional: typically \(\lambda_f \) = 10:1 ratio with \(\lambda_a \))

Roughness Isn’t Everything!

![Roughness Profile](image-url)
Roughness Isn’t Everything!

Now for some cool stuff...

- Pushed up material(?)
- Will it leak?
- Things that go bump
Pushed up material?

“False” Peaks
No False Peaks with “Robust”

Morphological Filtering

- Based on the interaction of a specific geometry with the measured data set.
Morphological Filtering

- Gasket Leak Detection

![Graphs showing morphological filtering results](image)

- Wvoid = 0.4 (µm²/µm)
- Wvoid = 3.7 (µm²/µm)
Morphological Filtering

• Stress Concentration Detection

Wcvx : “Waviness Convexity”

Morphological Filtering

• Cosmetic “Bump” detection
Filtering and Surface Texture

Mark C. Malburg, Ph.D.
www.DigitalMetrology.com
www.BeARockstarEngineer.com