ASME BPV II Part A Specification Review Form

*** NOTE: This form is a coversheet that is for information only***

<table>
<thead>
<tr>
<th>Action: 20-185</th>
<th>Adoption of: ASTM A671/A671M ↔ As: ASME SA671/SA671M</th>
</tr>
</thead>
</table>

Recommended Subtitle for ASME Specification:

Identical with ASTM Specification A671/A671M-19 except that for editions prior to -16, certifications for designations CF and CJ shall include the appropriate ASTM plate specification grade. For products ordered to Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, Supplementary Requirement S15 is mandatory.

Previous ASTM Version adopted by ASME:

-16

ASTM Revisions reviewed:

-16a, -19

Review Checklist

Part I – New Material Addition

Has a new grade, type, or class of material(s) been added to the specification since the last ASME adoption?

| YES ☐ | NO ☒ |

If a new grade, type, or class of material(s) has been added, then will the specification adoption result in the need for a revision to either an ASME BPV Code Volume or an ASME Code Case?

| YES ☐ | NO ☒ | NA ☒ |

Reason for answer:

Part II – A Change to an Existing Material

Have any of the following items changed for a material(s) that, as of the last ASME adoption, was already in the ASTM specification:

- A mechanical property?

 | YES ☐ | NO ☒ |

- A scope or thickness range?

 | YES ☐ | NO ☒ |

- Any chemical requirements or physical properties?

 | YES ☐ | NO ☒ |

- A heat treatment temperature or range?

 | YES ☐ | NO ☒ |

If ANY of the above answers is YES, then does the material(s) with the changed property appear in either an ASME BPV Code Volume or an ASME Code Case?

| YES ☐ | NO ☒ | NA ☒ |

If the material(s) with the changed property appears in an ASME BPV Code Volume(s)/Code Case(s), then will the adoption of this specification result in the need for the Volume/Code Case to be revised?

| YES ☒ | NO ☐ | NA ☐ |

Reason for answer:

If the adoption of this ASTM specification will result in the need for an ASME BPV Code Volume/Code Case revision, then has the technical basis for the change been attached in the Record’s Background Material tab?

| YES ☒ | NO ☐ | NA ☐ |

(If NO, state why:)

Part III – Other Significant Changes / BPV II Table II-200

Did other change(s) occur in the ASTM specification of which ASME BPV II needs to be aware?

| YES ☒ | NO ☐ |

Were any changes in the ASTM specification made as a result of an ASME request?

- Addition of Supplementary Requirement S15

 | YES ☒ | NO ☐ |

Has any change(s) been made to the ASTM specification that was not already identified in Parts I-II?

| YES ☐ | NO ☒ |
and which is objectionable to ASME? ☒

Will any of the proposed changes make any grade, type, or class of material(s) obsolete? YES ☐ NO ☒

With this adoption, does Mandatory Appendix II, Table II-200-1 need to restrict the usage of certain versions of this ASTM specification? YES ☐ NO ☒

Part IV – Other ASTM Changes & Recommended ASME Corrections

Other Changes to the ASTM Specification
(since the last ASME Spec Adoption)

A671 -16 to -16a
(1) Revised 8.2.4. A370, S9.1.7A2.5.1.7

A671 -16a to -19
(1) Added Supplementary Requirement S15 for ASME Section III Construction.

Recommended Corrections for Adoption into ASME BPV II

NOTE: The intent is that the ASTM proprietary footnotes and notes be removed and not printed. The editors have historically deleted the “boilerplate” and, in addition, have taken care of additional details such as adding the ASME logo and adding the recommended subtitle shown above.

Respectfully submitted: Annemarie Appleton Tuesday, January 28, 2020, 5:26 PM
Phone 973-256-1616 email annemarie.appleton@alloystainless.com
Table II-200-1
Other Acceptable ASTM Editions (Cont’d)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Latest Adopted</th>
<th>Description</th>
<th>Other Acceptable Editions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-660</td>
<td>96(R10)</td>
<td>Identical</td>
<td>88 through 96(R10)</td>
</tr>
<tr>
<td>SA-662/SA-662M</td>
<td>17</td>
<td>Identical</td>
<td>86 through 17</td>
</tr>
<tr>
<td>SA-666</td>
<td>03</td>
<td>Identical</td>
<td>90 through 03</td>
</tr>
<tr>
<td>SA-667/SA-667M</td>
<td>87(R12)</td>
<td>Identical</td>
<td>...</td>
</tr>
<tr>
<td>SA-671/SA-671M</td>
<td>16</td>
<td>Identical except for additional requirements that apply as shown in Specification and, for editions prior to 16, certification for designations CF and Cj shall include the appropriate ASTM plate specification grade.</td>
<td>85 through 16</td>
</tr>
<tr>
<td>SA-672/SA-672M</td>
<td>14</td>
<td>Identical except that additional requirements apply as shown in the Specification.</td>
<td>81 through 14</td>
</tr>
<tr>
<td>SA-675/SA-675M</td>
<td>03(R09)</td>
<td>Identical except that Grades 65 [450] and 70 [485] have been added to S7. Certification is mandatory.</td>
<td>...</td>
</tr>
<tr>
<td>SA-688/SA-688M</td>
<td>15</td>
<td>Identical. In the case of the -96 and -98 ASTM revisions, solution treatment of Grade UNS N08367 is mandatory.</td>
<td>88a through 15</td>
</tr>
<tr>
<td>SA-691/SA-691M</td>
<td>18</td>
<td>Identical except that the additional requirements apply as shown in the Specification.</td>
<td>85a through 18</td>
</tr>
<tr>
<td>SA-693</td>
<td>02a</td>
<td>Identical except for aligning the elongation requirements for Gr. XM-16 and correction of the max. hardness for Gr. XM-12 and 630 in Table 5. Also a revision to Note B of Table 1.</td>
<td>88 through 02a</td>
</tr>
<tr>
<td>SA-696</td>
<td>90a(R12)</td>
<td>Identical</td>
<td>85 through 90a(R12)</td>
</tr>
<tr>
<td>SA-703/SA-703M</td>
<td>07</td>
<td>Identical General Requirements for Castings</td>
<td>87b through 07</td>
</tr>
<tr>
<td>SA-705/SA-705M</td>
<td>95(R09)</td>
<td>Identical</td>
<td>87a through 95(R09)</td>
</tr>
<tr>
<td>SA-723/SA-723M</td>
<td>10(R15)</td>
<td>Identical. ASTM edition 02 is acceptable except that for Class 2a the minimum elongation shall be 13.5%.</td>
<td>02 through 10(R15)</td>
</tr>
<tr>
<td>SA-724/SA-724M</td>
<td>09(R13)</td>
<td>Identical</td>
<td>88 through 09(R13)</td>
</tr>
<tr>
<td>SA-727/SA-727M</td>
<td>02(R07)</td>
<td>Identical</td>
<td>...</td>
</tr>
<tr>
<td>SA-731/SA-731M</td>
<td>91</td>
<td>Identical except for an editorial correction in Table 2.</td>
<td>88 through 91</td>
</tr>
<tr>
<td>SA-736/SA-736M</td>
<td>17</td>
<td>Identical</td>
<td>88 through 17</td>
</tr>
<tr>
<td>SA-737/SA-737M</td>
<td>17</td>
<td>Identical</td>
<td>87(R91) through 17</td>
</tr>
<tr>
<td>SA-738/SA-738M</td>
<td>12a</td>
<td>Identical</td>
<td>87a through 12a</td>
</tr>
<tr>
<td>SA-739</td>
<td>90a(R12)</td>
<td>Identical</td>
<td>81a through 90a(R12)</td>
</tr>
<tr>
<td>SA-747/SA-747M</td>
<td>04</td>
<td>Identical except for the revision of the mandatory ordering requirements of 4.1.6 and the mandatory use of Supplementary Requirement S15 of SA-781/SA-781M.</td>
<td>86 through 04</td>
</tr>
<tr>
<td>SA-748/SA-748M</td>
<td>87(R12)</td>
<td>Identical</td>
<td>...</td>
</tr>
<tr>
<td>SA-749/SA-749M</td>
<td>97(R02)</td>
<td>Identical General Requirements for Steel Strip</td>
<td>...</td>
</tr>
<tr>
<td>SA-751</td>
<td>01(R06)</td>
<td>Identical except for editorial corrections to an element designation in Tables 1 and 2. Chemical Analysis Test Methods for Steel</td>
<td>89a through 01(R06)</td>
</tr>
</tbody>
</table>
SPECIFICATION FOR ELECTRIC-FUSION-WELDED STEEL PIPE FOR ATMOSPHERIC AND LOWER TEMPERATURES

SA-671/SA-671M

All products furnished under this SA specification are intended for application under the rules of Section III of the ASME Boiler and Pressure Vessel Code. Manufacture of such products is limited to manufacturers who hold the appropriate ASME Certificate of Authorization and Certification Mark. In addition to conforming to this specification, the manufacturer shall meet all applicable requirements of Section III of the Code. The plate used to fabricate the pipe shall conform to the applicable SA specification in ASME Boiler and Pressure Vessel Code, Section II. The joints shall be full-penetration butt welds as obtained by double welding or by other means which will obtain the same quality of deposited and weld metal on the inside and outside. Welds using metal backing strips which remain in place are excluded. The product is subject to all requirements of Section III of the Code including welding, heat treatment, nondestructive examination, authorized inspection at the point of manufacture, and application of the Certification Mark.

The applicable ASME Partial Data Report Form, signed by an Authorized Inspector, and a certified mill test report shall be furnished for each lot of pipe as defined by requirement S14 of this specification. Each length of pipe shall be marked in such a manner as to identify each piece with the lot and the certified mill test report.

For products ordered to Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, Supplementary Requirement S15 is mandatory.
Designation: A671/A671M – 19

Standard Specification for Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

1. Scope

1.1 This specification covers electric-fusion-welded steel pipe with filler metal added, fabricated from pressure vessel quality plate of several analyses and strength levels and suitable for high-pressure service at atmospheric and lower temperatures. Heat treatment may or may not be required to attain the desired properties or to comply with applicable code requirements. Supplementary requirements are provided for use when additional testing or examination is desired.

1.2 The specification nominally covers pipe 16 in. [400 mm] in outside diameter or larger and of 1/4 in. [6 mm] wall thickness or greater. Pipe having other dimensions may be furnished provided it complies with all other requirements of this specification.

1.3 Several grades and classes of pipe are provided.

1.3.1 Grade designates the type of plate used as listed in 5.1.

1.3.2 Class designates the type of heat treatment performed during manufacture of the pipe, whether the weld is radiographically examined, and whether the pipe has been pressure tested as listed in 1.3.3.

1.3.3 Class designations are as follows (Note 1):

Class	Heat Treatment on Pipe	Radiography, see Section	Pressure Test, see:
10 | none | none | none
11 | none | g | none
12 | none | g | 8.3
13 | none | none | 8.3
20 | stress relieved, see 5.3.1 | none | none
21 | stress relieved, see 5.3.1 | g | none
22 | stress relieved, see 5.3.1 | g | 8.3
23 | stress relieved, see 5.3.1 | none | 8.3
30 | normalized, see 5.3.2 | none | none
31 | normalized, see 5.3.2 | g | none
32 | normalized, see 5.3.2 | g | 8.3
33 | normalized, see 5.3.2 | none | 8.3
40 | normalized and tempered, see 5.3.3 | none | none
41 | normalized and tempered, see 5.3.3 | 9 | none
42 | normalized and tempered, see 5.3.3 | 9 | 8.3
43 | quenched and tempered, see 5.3.4 | none | none
50 | quenched and tempered, see 5.3.4 | none | none
51 | quenched and tempered, see 5.3.4 | 9 | none
52 | quenched and tempered, see 5.3.4 | 9 | 8.3
53 | quenched and tempered, see 5.3.4 | none | 8.3
70 | quenched and precipitation heat treated | none | none
71 | quenched and precipitation heat treated | 9 | none
72 | quenched and precipitation heat treated | 9 | 8.3
73 | quenched and precipitation heat treated | none | 8.3

Note 1—Selection of materials should be made with attention to temperature of service. For such guidance, Specification A20/A20M may be consulted.

1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:

- A20/A20M Specification for General Requirements for Steel Plates for Pressure Vessels
- A370 Test Methods and Definitions for Mechanical Testing of Steel Products
- A435/A435M Specification for Straight-Beam Ultrasonic Examination of Steel Plates

Footnotes:

1 This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.09 on Carbon Steel Tubular Products.

2 For ASME Boiler and Pressure Vessel Code applications see related Specification SA-671 in Section II of that Code.

3 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States
A530/A530M Specification for General Requirements for Specialized Carbon and Alloy Steel Pipe
A577/A577M Specification for Ultrasonic Angle-Beam Examination of Steel Plates
A578/A578M Specification for Straight-Beam Ultrasonic Examination of Rolled Steel Plates for Special Applications
E110 Test Method for Rockwell and Brinell Hardness of Metallic Materials by Portable Hardness Testers
E165/E165M Practice for Liquid Penetrant Testing for General Industry
E709 Guide for Magnetic Particle Testing

2.2 Plate Steels:
A203/A203M Specification for Pressure Vessel Plates, Alloy Steel, Nickel
A299/A299M Specification for Pressure Vessel Plates, Carbon Steel, Manganese-Silicon
A353/A353M Specification for Pressure Vessel Plates, Alloy Steel, Double-Normalized and Tempered 9 % Nickel
A515/A515M Specification for Pressure Vessel Plates, Carbon Steel, for Intermediate- and Higher-Temperature Service
A516/A516M Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service
A517/A517M Specification for Pressure Vessel Plates, Alloy Steel, High-Strength, Quenched and Tempered
A537/A537M Specification for Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel
A553/A553M Specification for Pressure Vessel Plates, Alloy Steel, Quenched and Tempered 7, 8, and 9 % Nickel
A736/A736M Specification for Pressure Vessel Plates, Low-Carbon Age-Hardening Nickel-Copper-Chromium-Molybdenum-Columbium (Niobium) Alloy Steel

2.3 ASME Boiler and Pressure Vessel Code:*
Section II
Section III
Section VIII
Section IX

3. Terminology
3.1 Definitions of Terms Specific to This Standard:
3.1.1 lot—a lot shall consist of 200 ft [60 m] or fraction thereof of pipe from the same heat of steel.

4. Ordering Information
4.1 The inquiry and order for material under this specification should include the following information:
4.1.1 Quantity (feet, metres, or number of lengths),
4.1.2 Name of material (steel pipe, electric-fusionwelded),
4.1.3 Specification number,
4.1.4 Grade and class designations (see 1.3),
4.1.5 Size (inside or outside diameter, nominal or minimum wall thickness),
4.1.6 Length (specific or random),
4.1.7 End finish (11.4),
4.1.8 Purchase options, if any (see 5.2.3 and 11.3 of this specification. See also Specification A530/A530M),
4.1.9 Supplementary requirements, if any.

5. Materials and Manufacture
5.1 Materials—The steel plate material shall conform to the requirement of the applicable plate specification for the pipe grade ordered as listed in Table 1.

5.2 Welding:
5.2.1 The joints shall be double-welded, full-penetration welds made in accordance with procedures and by welders or welding operators qualified in accordance with the ASME Boiler and Pressure Vessel Code, Section IX.
5.2.2 The welds shall be made either manually or automatically by an electric process involving the deposition of filler metal.
5.2.3 As welded, the welded joint shall have positive reinforcement at the center of each side of the weld, but no more than ½ in. [3 mm]. This reinforcement may be removed at the manufacturer’s option or by agreement between the manufacturer and purchaser. The contour of the reinforcement shall be smooth and the deposited metal shall be fused smoothly and uniformly into the plate surface.

5.3 Heat Treatment—All classes other than 10, 11, 12, and 13 shall be heat treated in furnace controlled to ± 25 °F [± 15 °C] and equipped with a recording pyrometer so that heating records are available. Heat treating after forming and welding shall be to one of the following:

<table>
<thead>
<tr>
<th>TABLE 1 Plate Specifications</th>
<th>Pipe Grade No.</th>
<th>Type of Steel</th>
<th>ASTM Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 55</td>
<td></td>
<td>plain carbon</td>
<td>A285/A285M</td>
</tr>
<tr>
<td>CB 60</td>
<td></td>
<td>plain carbon, killed</td>
<td>A515/A515M</td>
</tr>
<tr>
<td>CB 65</td>
<td></td>
<td>plain carbon, killed</td>
<td>A515/A515M</td>
</tr>
<tr>
<td>CC 70</td>
<td></td>
<td>plain carbon, killed</td>
<td>A515/A515M</td>
</tr>
<tr>
<td>CC 60</td>
<td></td>
<td>plain carbon, killed, fine grain</td>
<td>A516/A516M</td>
</tr>
<tr>
<td>CC 65</td>
<td></td>
<td>plain carbon, killed, fine grain</td>
<td>A516/A516M</td>
</tr>
<tr>
<td>CC 70</td>
<td></td>
<td>plain carbon, killed, fine grain</td>
<td>A516/A516M</td>
</tr>
<tr>
<td>CD 70</td>
<td></td>
<td>manganese-silicon, normalized</td>
<td>A537/A537M</td>
</tr>
<tr>
<td>CD 80</td>
<td></td>
<td>manganese-silicon, quenched and tempered</td>
<td>A537/A537M</td>
</tr>
<tr>
<td>CFA 65</td>
<td></td>
<td>nickel steel</td>
<td>A203/A203M</td>
</tr>
<tr>
<td>CFB 70</td>
<td></td>
<td>nickel steel</td>
<td>A203/A203M</td>
</tr>
<tr>
<td>CFD 65</td>
<td></td>
<td>nickel steel</td>
<td>A203/A203M</td>
</tr>
<tr>
<td>CFE 70</td>
<td></td>
<td>nickel steel</td>
<td>A203/A203M</td>
</tr>
<tr>
<td>CG 100</td>
<td></td>
<td>9 % nickel</td>
<td>A535/A535M</td>
</tr>
<tr>
<td>CH 115</td>
<td></td>
<td>9 % nickel</td>
<td>A553/A553M</td>
</tr>
<tr>
<td>CJA 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CJB 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CJE 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CJF 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CJI 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CJO 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CJP 115</td>
<td></td>
<td>alloy steel, quenched and tempered</td>
<td>A517/A517M</td>
</tr>
<tr>
<td>CK 75</td>
<td></td>
<td>carbon-manganese-silicon</td>
<td>A299/A299M</td>
</tr>
<tr>
<td>CP 85</td>
<td></td>
<td>alloy steel, age hardening, quenched and precipitation heat treated</td>
<td>A736/A736M</td>
</tr>
</tbody>
</table>

5.3.1 Classes 20, 21, 22, and 23 pipe shall be uniformly heated within the post-weld heat-treatment temperature range indicated in Table 2 for a minimum of 1 h/in. [0.4 h/cm] of thickness or for 1 h, whichever is greater.

5.3.2 Classes 30, 31, 32, and 33, pipe shall be uniformly heated to a temperature in the austenitizing range and not exceeding the maximum normalizing temperature indicated in Table 2 and subsequently cooled in air at room temperature.

5.3.3 Classes 40, 41, 42, and 43 pipe shall be normalized in accordance with 5.3.2, After normalizing, the pipe shall be reheated to the tempering temperature indicated in Table 2 as a minimum and held at temperature for a minimum of 1⁄2 h/in. [0.2 h/cm] of thickness or for 1⁄2 h, whichever is greater, and air cooled.

5.3.4 Classes 50, 51, 52, and 53 pipe shall be uniformly heated to a temperature in the austenitizing range, and not exceeding the maximum quenching temperature indicated in Table 2 and subsequently quenched in water or oil. After quenching, the pipe shall be reheated to the tempering temperature indicated in Table 2 as a minimum and held at that temperature for a minimum of 1⁄2 h/in. [0.2 h/cm] of thickness or for 1⁄2 h, whichever is greater, and air cooled.

5.3.5 Classes 70, 71, 72, and 73 pipe shall be uniformly heated to a temperature in the austenitizing range, not exceeding the maximum quenching temperature indicated in Table 2, and subsequently quenched in water or oil. After quenching the pipe shall be reheated into the precipitation heat treating range indicated in Table 2 for a time to be determined by the manufacturer.

6. General Requirements for Delivery

6.1 Material furnished to this specification shall conform to the applicable requirements of the current edition of Specification A530/A530M unless otherwise provided herein.

7. Chemical Composition

7.1 Product Analysis of Plate—The pipe manufacturer shall make an analysis of each mill heat of plate material. The product analysis so determined shall meet the requirements of the plate specification to which the material was ordered.

Table 2 Heat Treatment Parameters

<table>
<thead>
<tr>
<th>Pipe Grade¹</th>
<th>ASTM Specification and Grade / Class / Type</th>
<th>Post-Weld Heat-Treatment Temperature Range °F [°C]</th>
<th>Normalizing Temperature, max, unless otherwise noted °F [°C]</th>
<th>Quenching Temperature, max, unless otherwise noted °F [°C]</th>
<th>Tempering Temperature, min °F [°C]</th>
<th>Precipitation Heat Treatment Temperature Range °F [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA 55</td>
<td>A285/A285M (C)</td>
<td>1100–1250 [590–680]</td>
<td>1700 [925]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CB 60</td>
<td>A515/A515M (60)</td>
<td>1100–1250 [590–680]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CB 65</td>
<td>A515/A515M (65)</td>
<td>1100–1250 [590–680]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CB 70</td>
<td>A515/A515M (70)</td>
<td>1100–1250 [590–680]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CC 60</td>
<td>A516/A516M (60)</td>
<td>1100–1200 [590–650]</td>
<td>1700 [925]</td>
<td>1700 [925]</td>
<td>1100 [590]</td>
<td>...</td>
</tr>
<tr>
<td>CC 65</td>
<td>A516/A516M (65)</td>
<td>1100–1200 [590–650]</td>
<td>1700 [925]</td>
<td>1700 [925]</td>
<td>1100 [590]</td>
<td>...</td>
</tr>
<tr>
<td>CC 70</td>
<td>A516/A516M (70)</td>
<td>1100–1200 [590–650]</td>
<td>1700 [925]</td>
<td>1700 [925]</td>
<td>1100 [590]</td>
<td>...</td>
</tr>
<tr>
<td>CD 70</td>
<td>A537/A537M (Cl 1)</td>
<td>1100–1250 [590–680]</td>
<td>1700 [925]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CD 80</td>
<td>A537/A537M (Cl 2)</td>
<td>1100–1250 [590–680]</td>
<td>...</td>
<td>1650 [900]</td>
<td>1100 [590]</td>
<td>...</td>
</tr>
<tr>
<td>CFA 65</td>
<td>A203/A203M (A)</td>
<td>1100–1175 [590–635]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CFB 70</td>
<td>A203/A203M (B)</td>
<td>1100–1175 [590–635]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CFD 65</td>
<td>A203/A203M (D)</td>
<td>1100–1175 [590–635]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CFE 70</td>
<td>A203/A203M (E)</td>
<td>1100–1175 [590–635]</td>
<td>1750 [950]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CG 100</td>
<td>A353/A353M</td>
<td>1025–1085 [550–580]</td>
<td>1650 ± 25</td>
<td>...</td>
<td>1050–1125</td>
<td>...</td>
</tr>
<tr>
<td>CH 100</td>
<td>A553/A553M (Type 1)</td>
<td>1025–1085 [550–580]</td>
<td>1475–1700</td>
<td>1050–1175</td>
<td>...</td>
<td>[560–605]</td>
</tr>
<tr>
<td>CJA 115</td>
<td>A517/A517M (A)</td>
<td>1000–1100 [540–590]</td>
<td>...</td>
<td>1650–1725</td>
<td>1150 [620]</td>
<td>...</td>
</tr>
<tr>
<td>CJB 115</td>
<td>A517/A517M (B)</td>
<td>1000–1100 [540–590]</td>
<td>...</td>
<td>1650–1725</td>
<td>1150 [620]</td>
<td>...</td>
</tr>
<tr>
<td>CJE 115</td>
<td>A517/A517M (E)</td>
<td>1000–1100 [540–590]</td>
<td>...</td>
<td>1650–1725</td>
<td>1150 [620]</td>
<td>...</td>
</tr>
<tr>
<td>CJF 115</td>
<td>A517/A517M (F)</td>
<td>1000–1100 [540–590]</td>
<td>...</td>
<td>1650–1725</td>
<td>1150 [620]</td>
<td>...</td>
</tr>
<tr>
<td>CJH 115</td>
<td>A517/A517M (H)</td>
<td>1000–1100 [540–590]</td>
<td>...</td>
<td>1650–1725</td>
<td>1150 [620]</td>
<td>...</td>
</tr>
<tr>
<td>CJP 115</td>
<td>A517/A517M (P)</td>
<td>1000–1100 [540–590]</td>
<td>...</td>
<td>1650–1725</td>
<td>1150 [620]</td>
<td>...</td>
</tr>
<tr>
<td>CK 75</td>
<td>A299/A299M (A)</td>
<td>1100–1250 [590–680]</td>
<td>1700 [925]</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CP85</td>
<td>A736/A736M (A, Class 3)</td>
<td>1000–1175 [540–635]</td>
<td>...</td>
<td>1725 [940]</td>
<td>...</td>
<td>1000–1225 [540–665]</td>
</tr>
</tbody>
</table>

¹Where ellipses (.) appear in this table, there is no requirement.
²Numbers indicate minimum tensile strength in ksi.
³In no case shall the post-weld heat-treatment temperature exceed the mill tempering temperature.
⁴Tempering range 1100 to 1300 [590 to 705], if accelerated cooling utilized per Specification A518/A518M.
⁵If hot forming is performed after heating to a temperature in the range from 1650 to 1750°F [900 to 955°C], the first normalize may be omitted.
⁶Prior to the tempering treatment, the plate may be subjected to an intermediate heat treatment consisting of heating to a temperature in the range from 1165 to 1290°F [630 to 700°C] and either air-cooled or water quenched. See Specification A553/A553M for hold times and cooling instructions.
7.2 Product Analyses of Weld—The pipe manufacturer shall make an analysis of finished deposited weld material from each 200 ft [60 m] or fraction thereof. Analyses shall conform to the welding procedure for deposited weld metal.

7.3 Analysis may be taken from the mechanical test specimens. The results of the analyses shall be reported to the purchaser.

8. Mechanical Requirements

8.1 Tension Test:

8.1.1 Requirements—Transverse tensile properties of the welded joint shall meet the minimum requirements for ultimate tensile strength of the specified plate material. In addition for Grades CD and CJ, when these are of Class 3x, 4x, or 5x, and Grade CP of 7x, the transverse tensile properties of the base plate shall be determined on specimens cut from the heat-treated pipe. These properties shall meet the mechanical test requirements of the plate specification.

8.1.2 Number of Tests—One test specimen of weld metal and one specimen of base metal, if required by 8.1.1, shall be made and tested to represent each lot of finished pipe.

8.1.3 Test Specimen Location and Orientation—The test specimens shall be taken transverse to the weld at the end of the finished pipe and may be flattened cold before final machining to size.

8.1.4 Test Method—The test specimen shall be made in accordance with QW-150 in Section IX of the ASME Boiler and Pressure Vessel Code. The test specimen shall be tested at room temperature in accordance with Test Methods and Definitions A370.

8.2 Transverse Guided Weld Bend Test:

8.2.1 Requirements—The bend test shall be acceptable if no cracks or other defects exceeding 1/8 in. [3 mm] in any direction are present in the weld metal or between the weld and the base metal after bending. Cracks that originate along the edges of the specimen during testing, and that are less than 1/4 in. [6 mm] measured in any direction shall not be considered.

8.2.2 Number of Tests—One test (two specimens) shall be made to represent each lot of finished pipe.

8.2.3 Test Specimen Location and Orientation—Two bend test specimens shall be taken transverse to the weld at the end of the finished pipe. As an alternative, by agreement between the purchaser and the manufacturer, the test specimens may be taken from a test plate of the same material as the pipe, the test plate being attached to the end of the cylinder and welded as a prolongation of the pipe longitudinal seam.

8.2.4 Test Method—The test requirements of A370, A2.5.1.7 shall be met. For wall thicknesses over 5/8 in. [10 mm] but less than 3/4 in. [19 mm] side-bend tests may be made instead of the face and root-bend tests. For wall thicknesses 3/4 in. [19 mm] and over both specimens shall be subjected to the side-bend test.

8.3 Pressure Test—Classes X2 and X3 pipe shall be tested in accordance with Specification A530/A530M, Hydrostatic Test Requirements.

9. Radiographic Examination

9.1 The full length of each weld of Classes X1 and X2 shall be radiographically examined in accordance with and meet the requirements of ASME Boiler and Pressure Vessel Code, Section VIII, Paragraph UW–51.

9.2 Radiographic examination may be performed prior to heat treatment.

10. Rework

10.1 Elimination of Surface Imperfections—Unacceptable surface imperfections shall be removed by grinding or machining. The remaining thickness of the section shall be no less than the minimum specified in Section 11. The depression after grinding or machining shall be blended uniformly into the surrounding surface.

10.2 Repair of Base Metal Defects by Welding:

10.2.1 The manufacturer may repair, by welding, base metal where defects have been removed, provided the depth of the repair cavity as prepared for welding does not exceed 1/8 of the nominal thickness and the requirements of 10.2.2, 10.2.3, 10.2.4, 10.2.5 and 10.2.6 are met. Base metal defects in excess of these may be repaired with prior approval of the customer.

10.2.2 The defect shall be removed by suitable mechanical or thermal cutting or gouging methods and the cavity prepared for repair welding.

10.2.3 The welding procedure and welders or welding operators are to be qualified in accordance with Section IX of the ASME Boiler and Pressure Vessel Code.

10.2.4 The full length of the repaired pipe shall be heat treated after repair in accordance with the requirements of the pipe class specified.

10.2.5 Each repair weld of a defect where the cavity, prepared for welding, has a depth exceeding the lesser of 1/8 in. [10 mm] or 10 % of the nominal thickness shall be examined by radiography in accordance with the methods and the acceptance standards of Section 9.

10.2.6 The repair surface shall be blended uniformly into the surrounding base metal surface and examined and accepted in accordance with Supplementary Requirements S6 or S8.

10.3 Repair of Weld Metal Defects by Welding:

10.3.1 The manufacturer may repair weld metal defects if he meets the requirements of 10.2.3, 10.2.4, 10.3.2, 10.3.3 and 10.4.

10.3.2 The defect shall be removed by suitable mechanical or thermal cutting or gouging methods and the repair cavity examined and accepted in accordance with Supplementary Requirements S7 or S9.

10.3.3 The weld repair shall be blended uniformly into the surrounding metal surfaces and examined and accepted in accordance with 9.1 and with Supplementary Requirements S7 or S9.

10.4 Retest—Each length of repaired pipe of a class requiring a pressure test shall be hydrostatically tested following repair.
11. Dimensions, Mass and Permissible Variations

11.1 The wall thickness and weight for welded pipe furnished to this specification shall be governed by the requirements of the specification to which the manufacturer ordered the plate.

11.2 Permissible variations in dimensions at any point in a length of pipe shall not exceed the following:

11.2.1 Outside Diameter—Based on circumferential measurement ± 0.5 % of the specified outside diameter.

11.2.2 Out-of-Roundness—Difference between major and minor outside diameters, 1 %.

11.2.3 Alignment—Using a 10-ft [3-m] straight edge placed so that both ends are in contact with the pipe, ¼ in. [3 mm].

11.2.4 Thickness—The minimum wall thickness at any point in the pipe shall not be more than 0.01 in. [0.3 mm] under the specified nominal thickness.

11.3 Circumferential welded joints of the same quality as the longitudinal joints shall be permitted by agreement between the manufacturer and the purchaser.

11.4 Lengths with unmachined ends shall be within −0, +½ in. [−0, +13 mm] of that specified. Lengths with machined ends shall be as agreed between the manufacturer and the purchaser.

12. Workmanship, Finish, and Appearance

12.1 The finished pipe shall be free of injurious defects and shall have a workmanlike finish. This requirement is to mean the same as the identical requirement that appears in Specification A20/A20M with respect to steel plate surface finish.

13. Product Marking

13.1 In addition to the marking provision of Specification A530/A530M, class marking in accordance with 1.3.3 shall follow the grade marking, for example, CC 70–10.

13.2 Bar Coding—In addition to the requirements in 13.1, bar coding is acceptable as a supplemental identification method. The purchaser may specify in the order a specific bar coding system to be used.

SUPPLEMENTARY REQUIREMENTS

One or more of the following supplementary requirements shall be applied only when specified by the purchaser in the inquiry, contract, or order. Details of these supplementary requirements shall be agreed upon in writing by the manufacturer and purchaser. Supplementary requirements shall in no way negate any requirement of the specification itself.

S1. Tension and Bend Tests

S1.1 Tension tests in accordance with 8.1 and bend tests in accordance with 8.2 shall be made on specimens representing each length of pipe.

S2. Charpy V-Notch Test

S2.1 Requirements—The acceptable test energies for material shown in Specification A20/A20M shall conform to the energy values shown in Specification A20/A20M.

S2.1.1 Materials not listed in Specification A20/A20M shall be in accordance with the purchase order requirements.

S2.2 Number of Specimens—Each test shall consist of at least three specimens.

S2.2.1 One base metal test shall be made from one pipe length per heat per nominal wall thickness. For pipe from Classes 10, 11, 12, and 13, one base metal test shall be made per heat per size and per wall thickness.

S2.2.2 One weld-metal test shall be made in accordance with UG–84 of Section VIII of the ASME Boiler and Pressure Vessel Code.

S2.2.3 One heat-affected-zone test shall be made in accordance with UG–84 of Section VIII of the ASME Boiler and Pressure Vessel Code.

S2.3 Test Specimen Location and Orientation:

S2.3.1 Specimens for base-metal tests in Grades CA, CB, and CC in the as rolled stress relieved or normalized condition (classes of the 10, 20, 30, and 40 series) shall be taken so that the longitudinal axis of the specimen is parallel to the longitudinal axis of the pipe.

S2.3.2 Base-metal specimens of quench and tempered pipe, when the quenching and tempering follows the welding operation, shall be taken in accordance with the provision of N330 of Section III of the ASME Boiler and Pressure Vessel Code.

S2.4 Test Method—The specimen shall be Charpy-V Type A in accordance with Test Methods and Definitions A370. The specimens shall be tested in accordance with Test Methods and Definitions A370. Unless otherwise indicated by the purchaser, the test temperature shall be as given in Specification A20/A20M for those base materials covered by Specification A20/A20M. For materials not covered by Specification A20/A20M the test temperature shall be 10 °F [−12 °C] unless otherwise stated in the purchase order.

S3. Hardness Test

S3.1 Hardness tests shall be made in accordance with Test Methods and Definitions A370 or Test Method E110 across the welded joint of both ends of each length of pipe. In addition, hardness tests shall be made to include the heat-affected zone.
shall be made except that 100% of one surface shall be scanned by moving the search unit in parallel paths with not less than 10% overlap.

S11. Straight Beam Ultrasonic Examination of Flat Plate—UT 2

S11.1 The plate shall be examined in accordance with Specification A435/A435M except that 100% of one surface shall be scanned and the acceptance criteria shall be as follows:

S11.1.1 Any area, where one or more discontinuities produce a continuous total loss of back reflection accompanied by continuous indications on the same plane that cannot be encompassed within a circle whose diameter is 3 in. [76.2 mm] or one half of the plate thickness, whichever is greater, is unacceptable.

S11.1.2 In addition, two or more discontinuities on the same plane and having the same characteristics but smaller than described above shall be unacceptable unless separated by a minimum distance equal to the largest diameter of the larger discontinuity or unless they may be collectively encompassed by the circle described above.

S12. Angle Beam Ultrasonic Examination (Plate Less than 2 in. [50 mm] Thick)—UT 3

S12.1 The plate shall be examined in accordance with Specification A577/A577M except that the calibration notch shall be vee shaped and the acceptance criteria shall be as follows: Any area showing one or more reflections producing indications whose amplitude exceeds that of the calibration notch is unacceptable.

S13. Repair Welding

S13.1 Repair of base metal defects by welding shall be done only with customer approval.
S14. Description of Term

S14.1 *lot*—all pipe of the same mill heat of plate material and wall thickness (within ±1/4 in. [6 mm]) heat treated in one furnace charge. For pipe that is not heat treated or that is heat treated in a continuous furnace, a lot shall consist of each 200 ft [60 m] or fraction thereof of all pipe of the same mill heat of plate material and wall thickness (within ±1/4 in. [6 mm]), subjected to the same heat treatment. For pipe heat treated in a batch-type furnace that is automatically controlled within a 50 °F [30 °C] range and is equipped with recording pyrometers so that heating records are available, a lot shall be defined the same as for continuous furnaces.

S15. ASME Section III Construction

S15.1 Products furnished under this specification that are intended for application under the rules of Section III of the ASME Boiler and Pressure Vessel Code shall be manufactured by holders of the appropriate ASME Certificate of Authorization and Certification Mark. The product is subject to all applicable requirements of Section III, including welding, heat treatment, nondestructive examination, authorized inspection at the point of manufacture, and application of the Certification Mark.

S15.2 The applicable ASME Partial Data Report form, signed by an Authorized Nuclear Inspector, and a material test report shall be furnished for each lot of pipe.

S15.3 The plate used to fabricate the pipe shall conform to the applicable SA specification in ASME Boiler and Pressure Vessel Code, Section II. The welded joints shall be full penetration butt welds as obtained by double welding or by other means that will obtain the same quality of deposited weld metal on the inside and outside. Welds using metal backing strips that remain in place are prohibited.

S15.4 In addition to the requirements of S14 and Section 13 Product Marking, each length of pipe shall be so marked as to identify each such piece of pipe with the lot and the material test report.

SUMMARY OF CHANGES

Committee A01 has identified the location of selected changes to this specification since the last issue, A671/A671M – 16a, that may impact the use of this specification. (Approved Nov. 1, 2019.)

(1) Added Supplementary Requirement S15 for ASME Section III Construction.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/