Alternative test plans that deviate from the prior description but achieve the overall objective may be considered. This may, in particular, apply to solid solution alloys for which the stability of strength-controlling microstructures is uncertain.

For new materials for which the expectation of reasonable stability of strength-controlling microstructures is uncertain or suspect, and for extension of allowable stresses of more familiar classes of alloys into much higher temperature applications where such stability might come into question, either creep-rupture data with duration of more than 30,000 hr or equivalent experience in service is required. A Code Case may be approved based on shorter duration test data, but inclusion of the material into one of the sections of the BPV Code may be deferred until longer-term creep–rupture data are available or until sufficient service experience is obtained to provide confidence that extrapolations from the existing database reasonably describe the long-term behavior of the material.

For at least two heats, strain–time plots or minimum creep rate (MCR) data shall be provided for at least two test stresses at each test temperature, including at least one stress for each material resulting in MCR values below \(3 \times 10^{-4}\%/\text{hr}\). If it can be conclusively demonstrated that creep rate does not control the design stresses, the creep rate data may be sparse in relation to the above requirement. Creep rate data may be obtained in the course of stress–rupture testing or may be obtained on additional specimens.

5-1000 LOW-TEMPERATURE PROPERTIES

If use of the material below room temperature is contemplated, data should be provided at appropriate temperatures down to the lowest contemplated use temperature.

5-1100 TOUGHNESS DATA

Toughness data shall be provided for materials for which Construction Code toughness rules would be expected to apply. The test requirements shall be as required by the requested Construction Code(s). The data shall include test results for the intended lowest service metal temperature and for the range of material thicknesses desired.

5-1200 STRESS–STRAIN CURVES

If the material is to be used in components that operate under compressive loads (e.g., external pressure), stress–strain plots (tension or compression) shall be furnished for each of the three heats of material at 100°F intervals from room temperature up to 100°F above the maximum temperature desired. Engineering stress–strain data (stress versus strain) shall be provided in the form of stress–strain plots and digitized data, from which the plots were derived, in tabular form up to 1.2% strain. Digitized data shall be provided at intervals no greater than 0.01% strain. In addition, the minimum yield strength, modulus of elasticity, and proportional limit, for materials where a proportional limit can be identified, shall be reported for each temperature. The stress–strain plots (not load versus extension) shall be determined using a Class B-2 or better-accuracy extensometer as defined in ASTM E83. The plots shall include gridlines with the units marked on the gridlines: for strain, minor gridlines at intervals of 0.01% and major gridlines at 0.1%, up to 1.2% strain; and for stress, minor gridlines at 0.2 ksi and major gridlines at 2.0 ksi.

5-1300 FATIGUE DATA

If the material is to be used in cyclic service and the Construction Code in which adoption is desired requires explicit consideration of cyclic behavior, fatigue data for characterized samples shall also be furnished over the range of design temperatures desired, from \(10^3\) to at least \(10^6\) cycles.

5-1400 PHYSICAL PROPERTIES

For at least one heat meeting the requirements of the material specification, the inquirer shall furnish to the Boiler and Pressure Vessel Committee on Materials adequate data necessary to establish values for coefficient of thermal expansion, coefficients of thermal conductivity and diffusivity, modulus of elasticity, Poisson’s ratio, and density. Test methods shall be as follows:

(a) ASTM E228 or ASTM E831 for thermal expansion coefficients

(b) ASTM C177 for thermal conductivity and thermal diffusivity

(c) ASTM E1875 for modulus of elasticity

(d) ASTM E1875 or ASTM E132 for Poisson’s ratio

Data from other equivalent national or international test standards shall be acceptable in lieu of those listed above. Instantaneous, mean, and linear coefficients of thermal expansion shall be reported. Data for all physical properties shall be provided at least over the range of temperatures for which the material is to be used. It is recommended that data be collected at temperature intervals not greater than 100°F. If the material is intended to be used below room temperature, data should be provided for temperatures down to the minimum use temperature. Data provided shall be expressed in the units and to the number of significant figures shown in Table 5-800.
Alternative test plans that deviate from the prior description but achieve the overall objective may be considered. This may, in particular, apply to solid solution alloys for which the stability of strength-controlling microstructures is certain.

For new materials for which the expectation of reasonable stability of strength-controlling microstructures is uncertain or suspect, and for extension of allowable stresses of more familiar classes of alloys into much higher temperature applications where such stability might come into question, either creep–rupture data with duration of more than 30,000 h or equivalent experience in service is required. A Code Case may be approved based on shorter duration test data, but inclusion of the material into one of the sections of the BPV Code may be deferred until longer-term creep–rupture data are available or until sufficient service experience is obtained to provide confidence that extrapolations from the existing database reasonably describe the long-term behavior of the material.

For at least two heats, strain–time plots or minimum creep rate (MCR) data shall be provided for at least two test stresses at each test temperature, including at least one stress for each material resulting in MCR values below 3×10−4%/h. If it can be conclusively demonstrated that creep rate does not control the design stresses, the creep rate data may be sparse in relation to the above requirement. Creep rate data may be obtained in the course of stress–rupture testing or may be obtained on additional specimens.

5-1000 LOW-TEMPERATURE PROPERTIES

If use of the material below room temperature is contemplated, data should be provided at appropriate temperatures down to the lowest contemplated use temperature.

5-1100 TOUGHNESS DATA

Toughness data shall be provided for materials for which Construction Code toughness rules would be expected to apply. The test requirements shall be as required by the requested Construction Code(s). The data shall include test results for the intended lowest service metal temperature and for the range of material thicknesses desired.

5-1200 STRESS–STRAIN CURVES

If the material is to be used in components that operate under compressive loads (e.g., external pressure), stress–strain plots (tension or compression) shall be furnished for each of the three heats of material at 50°C intervals from room temperature up to 50°C above the maximum temperature desired. Engineering stress–strain data (stress versus strain) shall be provided in the form of stress–strain plots and digitized data, from which the plots were derived, in tabular form up to 1.2% strain. Digitized data shall be provided at intervals no greater than 0.01% strain. In addition, the minimum yield strength, modulus of elasticity, and proportional limit, for materials where a proportional limit can be identified, shall be reported for each temperature. The stress–strain plots (not load versus extension) shall be determined using a Class B-2 or better-accuracy extensometer as defined in ASTM E83. The plots shall include gridlines with the units marked on the gridlines: for strain, minor gridlines at intervals of 0.01% and major gridlines at 0.1%, up to 1.2% strain; and for stress, minor gridlines at 2 MPa and major gridlines at 20 MPa.

5-1300 FATIGUE DATA

If the material is to be used in cyclic service and the Construction Code in which adoption is desired requires explicit consideration of cyclic behavior, fatigue data for characterized samples shall also be furnished over the range of design temperatures desired, from 103 to at least 106 cycles.

5-1400 PHYSICAL PROPERTIES

For at least one heat meeting the requirements of the material specification, the inquirer shall furnish to the Boiler and Pressure Vessel Committee on Materials adequate data necessary to establish values for coefficient of thermal expansion, coefficients of thermal conductivity and diffusivity, modulus of elasticity, Poisson’s ratio, and density. Test methods shall be as follows:

(a) ASTM E228 or ASTM E831 for thermal expansion coefficients

(b) ASTM C177 for thermal conductivity and thermal diffusivity

(c) ASTM E1875 for modulus of elasticity

(d) ASTM E1875 or ASTM E132 for Poisson’s ratio

Data from other equivalent national or international test standards shall be acceptable in lieu of those listed above. Instantaneous, mean, and linear coefficients of thermal expansion shall be reported. Data for all physical properties shall be provided at least over the range of temperatures for which the material is to be used. It is recommended that data be collected at temperature intervals not greater than 50°C. If the material is intended to be used below room temperature, data should be provided for temperatures down to the minimum use temperature. Data provided shall be expressed in the units and to the number of significant figures shown in Table 5-800.
successive temperatures, two or more test stresses should be selected to be preferably identical or in a close range.

Alternative test plans that deviate from the prior description but achieve the overall objective may be considered. This may, in particular, apply to solid solution alloys for which the stability of strength-controlling microstructures is certain.

For new materials for which the expectation of reasonable stability of strength-controlling microstructures is uncertain or suspect, and for extension of allowable stresses of more familiar classes of alloys into much higher temperature applications where such stability might come into question, either creep–rupture data with duration of more than 30,000 hr or equivalent experience in service is required. A Code Case may be approved based on shorter duration test data, but inclusion of the material into one of the sections of the BPV Code may be deferred until longer-term creep–rupture data are available or until sufficient service experience is obtained to provide confidence that extrapolations from the existing database reasonably describe the long-term behavior of the material.

For at least two heats, strain–time plots or minimum creep rate (MCR) data shall be provided for at least two test stresses at each test temperature, including at least one stress for each material resulting in MCR values below 3×10^{-4} %/hr. If it can be conclusively demonstrated that creep rate does not control the design stresses, the creep rate data may be sparse in relation to the above requirement. Creep rate data may be obtained in the course of stress–rupture testing or may be obtained on additional specimens.

IV-1000 LOW-TEMPERATURE PROPERTIES

If use of the material below room temperature is contemplated, data should be provided at appropriate temperatures down to the lowest contemplated use temperature.

IV-1100 TOUGHNESS DATA

Toughness data shall be provided for materials for which Construction Code toughness rules would be expected to apply. The test requirements shall be as required by the requested Construction Code(s). The data shall include test results for the intended lowest service metal temperature and for the range of material thicknesses desired.

IV-1200 STRESS–STRAIN CURVES

If the material is to be used in components that operate under compressive loads (e.g., external pressure), stress–strain plots (tension or compression) shall be furnished for each of the three heats of material at 100°F (50°C) intervals from room temperature up to 100°F (50°C) above the maximum temperature desired. Engineering stress–strain data (stress versus strain) shall be provided in the form of stress–strain plots and digitized data, from which the plots were derived, in tabular form up to 1.2% strain. Digitized data shall be provided at intervals no greater than 0.01% strain. In addition, the minimum yield strength, modulus of elasticity, and proportional limit, for materials where a proportional limit can be identified, shall be reported for each temperature. The stress–strain plots (not load versus extension) shall be determined using a Class B-2 or better-accuracy extensometer as defined in ASTM E83. The plots shall include gridlines with the units marked on the gridlines: for strain, minor gridlines at intervals of 0.01% and major gridlines at 0.1%, up to 1.2% strain; and for stress, minor gridlines at 0.2 ksi (2 MPa) and major gridlines at 2.0 ksi (14 MPa).

IV-1300 FATIGUE DATA

If the material is to be used in cyclic service and the Construction Code in which adoption is desired requires explicit consideration of cyclic behavior, fatigue data for characterized samples shall also be furnished over the range of design temperatures desired, from 10^3 to at least 10^6 cycles.

IV-1400 PHYSICAL PROPERTIES

For at least one heat meeting the requirements of the material specification, the inquirer shall furnish to the Boiler and Pressure Vessel Committee on Materials adequate data necessary to establish values for coefficient of thermal expansion, coefficients of thermal conductivity and diffusivity, modulus of elasticity, Poisson’s ratio, and density. Test methods shall be as follows:

(a) ASTM E228 or ASTM E831 for thermal expansion coefficients

(b) ASTM C177 for thermal conductivity and thermal diffusivity

(c) ASTM E1875 for modulus of elasticity

(d) ASTM E1875 or ASTM E132 for Poisson’s ratio

Data from other equivalent national or international test standards shall be acceptable in lieu of those listed above. Instantaneous, mean, and linear coefficients of thermal expansion shall be reported. Data for all physical properties shall be provided at least over the range of temperatures for which the material is to be used. It is recommended that data be collected at temperature intervals not greater than 100°F (50°C). If the material is intended to be used below room temperature, data should be provided for temperatures down to the minimum
successive temperatures, two or more test stresses should be selected to be preferably identical or in a close range.

Alternative test plans that deviate from the prior description but achieve the overall objective may be considered. This may, in particular, apply to solid solution alloys for which the stability of strength-controlling microstructures is certain.

For new materials for which the expectation of reasonable stability of strength-controlling microstructures is uncertain or suspect, and for extension of allowable stresses of more familiar classes of alloys into much higher temperature applications where such stability might come into question, either creep–rupture data with duration of more than 30,000 hr or equivalent experience in service is required. A Code Case may be approved based on shorter duration test data, but inclusion of the material into one of the sections of the BPV Code may be deferred until longer-term creep–rupture data are available or until sufficient service experience is obtained to provide confidence that extrapolations from the existing database reasonably describe the long-term behavior of the material.

For at least two heats, strain–plots or minimum creep rate (MCR) data shall be provided for at least two test stresses at each test temperature, including at least one stress for each material resulting in MCR values below 3×10^{-3} %/hr. If it can be conclusively demonstrated that creep rate does not control the design stresses, the creep rate data may be sparse in relation to the above requirement. Creep rate data may be obtained in the course of stress–rupture testing or may be obtained on additional specimens.

IV-1000 LOW-TEMPERATURE PROPERTIES

If use of the material below room temperature is contemplated, data should be provided at appropriate temperatures down to the lowest contemplated use temperature.

IV-1100 TOUGHNESS DATA

Toughness data shall be provided for materials for which Construction Code toughness rules would be expected to apply. The test requirements shall be as required by the requested Construction Code(s). The data shall include test results for the intended lowest service metal temperature and for the range of material thicknesses desired.

IV-1200 STRESS–STRAIN CURVES

If the material is to be used in components that operate under compressive loads (e.g., external pressure), stress–strain plots (tension or compression) shall be furnished for each of the three heats of material at 100°F (50°C) intervals from room temperature up to 400°F (200°C) above the maximum temperature desired. Engineering stress–strain data (stress versus strain) shall be provided in the form of stress–strain plots and digitized data, from which the plots were derived, in tabular form up to 1.2% strain. Digitized data shall be provided at intervals no greater than 0.01% strain. In addition, the minimum yield strength, modulus of elasticity, and proportional limit, for materials where a proportional limit can be identified, shall be reported for each temperature. The stress–strain plots (not load versus extension) shall be determined using a Class B-2 or better-accuracy extensometer as defined in ASTM E83. The plots shall include gridlines with the units marked on the gridlines: for strain, minor gridlines at intervals of 0.01% and major gridlines at 0.1%, up to 1.2% strain; and for stress, minor gridlines at 0.2 ksi (2 MPa) and major gridlines at 2.0 ksi (20 MPa).

IV-1300 FATIGUE DATA

If the material is to be used in cyclic service and the Construction Code in which adoption is desired requires explicit consideration of cyclic behavior, fatigue data for characterized samples shall also be furnished over the range of design temperatures desired, from 10^3 to at least 10^6 cycles.

IV-1400 PHYSICAL PROPERTIES

For at least one heat meeting the requirements of the material specification, the inquirer shall furnish to the Boiler and Pressure Vessel Committee on Materials adequate data necessary to establish values for coefficient of thermal expansion, coefficients of thermal conductivity and diffusivity, modulus of elasticity, Poisson’s ratio, and density. Test methods shall be as follows:

(a) ASTM E228 or ASTM E831 for thermal expansion coefficients.

1 Since most materials are, in many applications, used in components that operate under compressive loads, the Committee recommends that stress–strain plots as described above should always be included in the data package submitted in support of the application for any new material.

2 The term minimum yield strength, as used here, means the yield strength values that are derived from the analysis of the tensile data required elsewhere in these Guidelines.

3 Modulus of elasticity values shall be determined by dynamic methods such as ASTM Test Method E1876 (latest edition) or other international equivalent.