(3) Design temperature is no warmer than 650°F (345°C) nor colder than −20°F (−29°C). Occasional operating temperatures colder than −20°F (−29°C) are acceptable when due to lower seasonal atmospheric temperature.

(4) The thermal or mechanical shock loadings are not a controlling design requirement. (See UG-22.)

(5) Cylcical loading is not a controlling design requirement. (See UG-22.)

UG-21 DESIGN PRESSURE

Each element of a pressure vessel shall be designed for at least the most severe condition of coincident pressure (including coincident static head in the operating position) and temperature expected in normal operation. For this condition, the maximum difference in pressure between the inside and outside of a vessel, or between any two chambers of a combination unit, shall be considered [see UG-98 and 3-2]. See also U-2(a).

UG-22 LOADINGS

The loadings to be considered in designing a vessel shall include those from:

(a) internal or external design pressure (as defined in UG-21);

(b) weight of the vessel and normal contents under operating or test conditions;

(c) superimposed static reactions from weight of attached equipment, such as motors, machinery, other vessels, piping, linings, and insulation;

(d) the attachment of:

(1) internals (see Nonmandatory Appendix D).
(2) vessel supports, such as lugs, rings, skirts, saddles, and legs (see Nonmandatory Appendix G);

(e) cyclic and dynamic reactions due to pressure or thermal variations, or from equipment mounted on a vessel, and mechanical loadings;

(f) wind, snow, and seismic reactions, where required;

(g) impact reactions such as those due to fluid shock;

(h) temperature gradients and differential thermal expansion;

(i) abnormal pressures, such as those caused by deflagration;

(j) test pressure and coincident static head acting during the test (see UG-99).

UG-23 MAXIMUM ALLOWABLE STRESS VALUES

(a) The maximum allowable stress value is the maximum unit stress permitted in a given material used in a vessel constructed under these rules. The maximum allowable tensile stress values permitted for different materials are given in Section II, Part D, Subpart 1. Section II, Part D is published as two separate publications. One publication contains values only in the U.S. Customary units and the other contains values only in SI units. The selection of the version to use is dependent on the set of units selected for construction. A listing of these materials is given in the following tables, which are included in Subsection C. For material identified as meeting more than one material specification and/or grade, the maximum allowable tensile stress value for either material specification and/or grade may be used provided all requirements and limitations for the material specification and grade are met for the maximum allowable tensile stress value chosen.

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-23</td>
<td>Carbon and Low Alloy Steel (stress values in Section II, Part D, Subpart 1, Table 3 for bolting and Table 1A for other carbon steels)</td>
</tr>
<tr>
<td>UNF-23.1</td>
<td>Nonferrous Metals (stress values in Section II, Part D, through Subpart 1, Table 3 for bolting and Table 1B for other nonferrous metals)</td>
</tr>
<tr>
<td>UHA-23</td>
<td>High Alloy Steel (stress values in Section II, Part D, Subpart 1, Table 3 for bolting and Table 1A or Table 1B for other high alloy steels)</td>
</tr>
<tr>
<td>UCI-23</td>
<td>Maximum Allowable Stress Values in Tension for Cast Iron</td>
</tr>
<tr>
<td>UCD-23</td>
<td>Maximum Allowable Stress Values in Tension for Cast Ductile Iron</td>
</tr>
<tr>
<td>UHT-23</td>
<td>Ferritic Steels with Properties Enhanced by Heat Treatment (stress values in Section II, Part D, Subpart 1, Table 1A)</td>
</tr>
<tr>
<td>UCT-23</td>
<td>Maximum Allowable Stress Values in Tension for 5%, 8%, and 9% Nickel Steels and 5083-0 Aluminum Alloy at Cryogenic Temperatures for Welded and Nonwelded Construction</td>
</tr>
</tbody>
</table>

(b) The maximum allowable longitudinal compressive stress to be used in the design of cylindrical shells or tubes, either seamless or butt welded, subjected to loadings that produce longitudinal compression in the shell or tube shall be the smaller of the following values:

(1) the maximum allowable tensile stress value permitted in (a) above;

(2) the value of the factor B determined by the following procedure where

\[E = \text{modulus of elasticity of material at design temperature.} \]

The modulus of elasticity to be used shall be taken from the applicable materials chart in Section II, Part D, Subpart 3. (Interpolation may be made between lines for intermediate temperatures.)

\[R_o = \text{outside radius of cylindrical shell or tube} \]

\[t = \text{the minimum required thickness of the cylindrical shell or tube} \]

The joint efficiency for butt-welded joints shall be taken as unity.

The value of B shall be determined as follows.

UG-23(a)(1) The methods for determining maximum allowable stress values for impregnated graphite (Certified Material) are given in UIG-23.