\[G_2 = \frac{2}{35} \sqrt{2\phi} \pi - \frac{1}{6} Y_0 + Y_1 \]
\[G_3 = \frac{52}{525} \sqrt{2\phi} \pi - \frac{1}{5} Y_0 + \frac{9}{10} Y_1 \]
\[G_4 = \frac{316}{2,475} \sqrt{2\phi} \pi - \frac{1}{5} Y_0 + \frac{4}{5} Y_1 \]

where \(Y_0 \) and \(Y_1 \) are the solution functions given in A-3500 for the appropriate flaw model and geometry for the component, and \(\phi \) is defined in A-3311. When the calculated value for a \(G_i \) coefficient is less than 0, the \(G_i \) coefficient shall be set to zero for calculating \(K_i \).

(b) For the surface point (Point 2), \(G_i \) shall be determined from the following equations:
\[G_0 = F_0 \]
\[G_1 = F_1 \]
\[G_2 = \frac{4}{105} \sqrt{\phi} \pi - \frac{1}{14} F_0 + \frac{5}{7} F_1 \]
\[G_3 = \frac{4}{105} \sqrt{\phi} \pi - \frac{1}{15} F_0 + \frac{1}{2} F_1 \]
\[G_4 = \frac{16}{495} \sqrt{\phi} \pi - \frac{3}{55} F_0 + \frac{4}{11} F_1 \]

where \(F_0 \) and \(F_1 \) are the solution functions given in A-3500 for the appropriate flaw model and geometry for the component, and \(\phi \) is defined in A-3311. When the calculated value for a \(G_i \) coefficient is less than 0, the \(G_i \) coefficient shall be set to zero for calculating \(K_i \).

Mandatory Appendix A-3420

K_i Based on Weight Function Method

For an arbitrary stress distribution \(\sigma(x) \) on crack face, the stress intensity factor is given by the following equation using the weight function method:

\[K_i = \int_0^d m(x,a)\sigma(x)dx \quad (9) \]

where
- \(a \) = crack depth
- \(K_i \) = stress intensity factor
- \(m(x,a) \) = Mode I weight function
- \(x \) = distance from the surface and moving positive toward the tip of the surface crack, defined in Figure A-3210-1
- \(\sigma(x) \) = stress distribution normal to the plane of the flaw

A-3421 K_i Equations Based on Weight Functions

(a) For the deepest point (Point 1) of a semielliptical surface crack as shown in Figure A-3100-1, illustration (b), the weight function is given by

\[m(x,a) = \frac{2}{[2x(a-x)]^{1/2}} \left[1 + M_1 \left(1 - \frac{x}{a} \right)^{1/2} + M_2 \left(1 - \frac{x}{a} \right) + M_3 \left(1 - \frac{x}{a} \right)^{3/2} \right] \]

where the weight function coefficients \(M_i \) are dependent on geometry of the structure and crack dimensions. The stress intensity factor calculated using A-3420 eq. (9) and the piecewise linear stress distribution of A-3221 eq. (3) is given by