bolts or intermittent welds shall be in proportion to the intensity of the shear, but the longitudinal spacing shall not exceed the maximum permitted, respectively, for compression or tension members in NF-3322.4(a)(3) or NF-3322.5(a) . Additionally, bolts or welds connecting flange to web shall be proportioned so as to transmit to the web any loads applied directly to the flange unless provision is made to transmit such loads by direct bearing.

(2) Partial length cover plates shall be extended beyond the theoretical cut-off point and the extended portion shall be attached to the beam or girder by high strength bolts for friction-type joints or fillet welds adequate at the applicable stresses allowed in NF-3324.6(a), NF-3324.5(d), or NF-3332.4, to develop the cover plate portion of the flexural stresses in the beam or girder at the theoretical cut-off point. In addition, for welded cover plates, the welds connecting the cover plate termination to the beam or girder in the length a' defined in (-a) through (-c), shall be adequate at the allowed stresses to develop the cover plate portion of the flexural stresses in the beam or girder at the distance a' from the end of the cover plate.

The length a' measured from the end of the cover plate, shall be

(-a) a distance equal to the width of the cover plate when there is a continuous weld equal to or larger than three-fourths of the plate thickness across the end of the plate and continuous welds along both edges of the cover plate in the length

(-b) a distance equal to $1\frac{1}{2}$ times the width of the cover plate when there is a continuous weld smaller than three-fourths of the plate thickness across the end of the plate and continuous welds along both edges of the cover plate in the length

(-c) a distance equal to two times the width of the cover plate when there is no weld across the end of the plate, but continuous welds along both edges of the cover plate in the length

(e) Stiffeners

(1) Bearing. Bearing stiffeners shall be placed in pairs at unframed ends on the webs of plate girders and, where required by (a)(2), at points of concentrated loads. Such stiffeners, when the load normal to the flange is tensile, shall be welded to the loaded flange and when the load normal to the flange is compressive may be welded or bear on the loaded flange. They shall be designed as columns subject to the provisions of NF-3322.1, assuming the column section to comprise the pair of stiffeners and a centrally located strip of the web whose width is equal to not more than 25 times its thickness at interior stiffeners, or a width equal to not more than 12 times its thickness when the stiffeners are located at the end of the web. The effective length shall be taken as not less than three-fourths of the length of the stiffeners in computing the ratio l/r. Only that portion of the stiffener outside of the flange angle fillet or the flange to web welds shall be considered effective in bearing.

(2) Average Web Shear. Except as provided herein, the largest average web shear f_v, ksi (MPa), computed for any condition of complete or partial loading, shall not exceed the value given by eq. (42)

$$ F_v = \left(\frac{S_y}{2.89} \right) C_v \leq 0.4S_y \quad (44) $$

where, when C_v is less than 0.8,

(U.S. Customary Units)

$$ C_v = \frac{45,000k}{S_y \left(\frac{h}{t} \right)^2} \quad (44) $$

(SI Units)

$$ C_v = \frac{310,000k}{S_y \left(\frac{h}{t} \right)^2} \quad (44) $$

when C_v is greater than 0.8,