
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and 

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. 

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 

Code Verification Implications 
for Algebraic Equations

Aaron Krueger, Brian Freno, and Blake Lance

ASME VVUQ 2022 Symposium



Multifidelity background
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• Algebraic models can often be found as part 
of multifidelity modeling
• Uses a combination of high, medium, and low 

fidelity models to make predictions

• The fidelity level refers to the relative level of 
physics captured by the model

• Capturing more physics costs more 
computational time, so a balance must be 
reached

• When using multiple models, multiple code 
verification strategies might have to be 
leveraged
• Specifically, how do we do code verification for 

algebraic models?

1Wagnild, R. M., Dinzl, D. J., Bopp, M. S., Dement, D. C., Robbins, B. A., Bruner, C.W. S., Grant, M. J., Murray, J., and Harper, J. M., “Development of a 
Multi-fidelity Toolkit for Rapid Aerothermal Model Development,” Sandia Report SAND2019-13632, Sandia National Laboratories, Oct 2019.

Figure 1: Example of Multifidelity Toolkit (MFTK) results 
for pressure1



What is code verification?
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• According to ASME V&V 20, “ Code 
verification establishes that the code 
accurately solves the mathematical model 
incorporated in the code (i.e., that the code 
is free of  mistakes for the simulations of  
interest)”.

• ASME V&V 20 also says “Code verification, 
establishing the correctness of  the code 
itself, can only be done by systematic 
discretization convergence tests and 
monitoring the convergence of  the solutions 
towards a known “benchmark” solution (i.e., 
a standard of  comparison).”

• What if  a computational model doesn’t have 
any discretization error? How do we do 
code verification?

Figure 2: Convergence example with 
and without coding errors2

2 Freno, Brian A., Carnes, Brian R., and Weirs, V. Gregory.  “Code-verification techniques for hypersonic reacting flows in thermochemical nonequilibrium.” 
Journal of Computational Physics, Vol. 425, Jan. 2021.



What should the testing strategy be for algebraic models?
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• Is it a regression test?
• Regression testing is “Selective retesting of a system 

or component to verify that modifications have not 
caused unintended effects and that the system or 
component still complies with its specified 
requirements.”3

• This is typically an automated relative test that 
compares today’s result with yesterday’s result, 
rather than comparing with some known true 
solution

• Is it a unit test?
• Unit testing is “Testing of individual hardware or 

software units or groups of related units.” 3

• This is testing of individual functions rather than a 
large portion of the code

• We need a test that covers a large portion of the 
code and compares to a true solution
• This type of testing is with the spirit of code 

verification, but different in which metric to measure

End-

To-End

Regression

Unit

Code Verification 
is at this level

3IEEE StD 610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology



Using analytic solutions for algebraic models

• Since an analytic solution is readily 
available for algebraic models, 
comparing the code solution to the 
analytic solution is straight forward
• This comparison should match exactly up 

to round-off precision

• Since we are comparing the solutions 
directly, only one mesh is required (more 
refinements confirm results)

• Unlike the method of manufactured 
solutions (MMS), no right hand side term 
is needed

• To test out this strategy, we’ll apply this 
code verification technique to a low-
fidelity model in a high-speed 
compressible flow code

• Testing will start simple with additional 
complexity added later

• Complete a validation assessment before 
and after code verification testing

5
4B. W. Lance, A. M. Krueger, B. A. Freno, R. M. Wagnild, Verification and Validation Activities for the Multi-Fidelity Toolkit, Tech. Rep. SAND2022-1479, Sandia 
National Laboratories, Albuquerque, NM, Feb 2022.

Figure 3: HIFiRE-1 wind tunnel simulation Mach number predictions for RANS-SST4



High-speed compressible flow problem set up
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• Two separate problems in MFTK were analyzed
• Flat plate

• Inclined plate

• Only one mesh was required since discretization 
errors were not present

• Using analytical solutions, the maximum relative 
error is identified

𝜀∞ = max
𝑖

𝑄𝑜𝐼𝑖𝑒𝑥𝑎𝑐𝑡 − 𝑄𝑜𝐼𝑖𝑆𝑃𝐴𝑅𝐶
𝑄𝑜𝐼𝑖𝑒𝑥𝑎𝑐𝑡

• For problems without discretization errors, 𝜀∞
should be on the order of round-off error (10−10)

• 𝐶𝑝, 𝑃𝑒 , 𝑽𝑒 , 𝑀𝑒 , 𝑇𝑒 , 𝜌𝑒 , 𝒏𝑣 , Dist, 𝜏, and 𝑞𝑤 are tested

Flat Plate Problem

Inclined Plate Problem



Initial code verification results
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• Code verification of inviscid variables have 
been previously completed

• Compute 𝜀∞ for each QoI
• Coding error exists if 𝜀∞ > 10−10

• Coding error does not exists if 𝜀∞ < 10−10

Flat Plate Problem Inclined Plate Problem

• The shear stress and heat flux for all three 
viscous models have coding errors

• Debugging of these models can now start



Code bugs found

Code Bug in Laminar Equations

• A code bug was identified in the laminar 
coefficient of skin friction calculation
• Impact shear stress and heat flux 

• All other inputs into this equation were 
verified
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Code Bug in Turbulence Equations

• A code bug was identified in the turbulent 
coefficient of skin friction calculation
• Impact shear stress and heat flux 

• All other inputs into this equation were 
verified
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𝐴 = 𝑓 𝑏 𝐵 = 𝑓 𝑏and



Initial code verification results
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• Once the coding errors were fixed, the 
simulations were reran

• Computed 𝜀∞ for each QoI
• Coding error exists if 𝜀∞ > 10−10

• Coding error does not exists if 𝜀∞ < 10−10

Flat Plate Problem Inclined Plate Problem

• Since all variables have 𝜀∞ < 10−10, no 
coding errors exist

• Code verification activities can continue for 
more complex scenarios



Measuring the impact

• Now that the model is bug free, let’s 
measure the impact on a validation 
study

• Using the HIFiRE-1 wind tunnel test data, 
we are able to see the impact of these 
coding errors on assessing model form 
error

• This process also highlights the 
importance of completing code 
verification before a validation study

• Both a laminar case and a turbulent case 
results are shown
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Figure 3: The HIFiRE-1 wind tunnel test geometry that shows the fore-cone on the 
left, the cylindrical section in the center, and the flare on the right; from Wadhams
2008. The text states that the final nosetip was changed from sharp to a radius of 
2.5 mm and the flare angle was changed from 37˚ to 33 ˚.



Impact on results

• For the laminar case, small differences 
are seen along the streamline direction

• This would have a small impact on 
validation 
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• For the turbulent case, large differences 
are seen along the streamline direction, 
especially at the tail 

• This would have a large impact on 
validation 

Simulation results generated by 
Jared Kirsch of Sandia National Labs



Algebraic models with discretization errors

• For certain problems, numerical errors 
can be present
• Geometric discretization

• Only part of the model is algebraic

• Iterative errors can still be present

• Break problem up into purely algebraic 
and discrete if possible

• Initial testing should match analytic 
solution to round-off for algebraic 
portion

• Order-of-accuracy testing should cover 
portions of the code that were not 
testing in previous testing

• Cone problem introduces geometric 
discretization

• Additionally, the streamline (Dist) 
calculation introduces discretization error
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Curved Mesh



Conclusions
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• We applied code verification methods in 
a slightly different way

• We apply this methodology to a high-
speed compressible flow code

• Three coding errors were identified in 
the calculation of the coefficient of skin 
friction

• We showed the impact of the code bug 
on the HIFiRE-1 wind tunnel test 
problem
• This highlights the impact on a validation 

assessment 

• Future work is to continue code 
verification on the cone problem, which 
will use order-of-accuracy testing

• When selecting problems, it is valuable 
to isolate specific errors
• Start simple and evolve tests to include 

more possible sources of errors

• Acknowledge that the “verification 
infrastructure” can be causing issues
• Add unit testing to cover calculating the 

analytic solution


