
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Code Verification Implications
for Algebraic Equations

Aaron Krueger, Brian Freno, and Blake Lance

ASME VVUQ 2022 Symposium

Multifidelity background

2

• Algebraic models can often be found as part
of multifidelity modeling
• Uses a combination of high, medium, and low

fidelity models to make predictions

• The fidelity level refers to the relative level of
physics captured by the model

• Capturing more physics costs more
computational time, so a balance must be
reached

• When using multiple models, multiple code
verification strategies might have to be
leveraged
• Specifically, how do we do code verification for

algebraic models?

1Wagnild, R. M., Dinzl, D. J., Bopp, M. S., Dement, D. C., Robbins, B. A., Bruner, C.W. S., Grant, M. J., Murray, J., and Harper, J. M., “Development of a
Multi-fidelity Toolkit for Rapid Aerothermal Model Development,” Sandia Report SAND2019-13632, Sandia National Laboratories, Oct 2019.

Figure 1: Example of Multifidelity Toolkit (MFTK) results
for pressure1

What is code verification?

3

• According to ASME V&V 20, “ Code
verification establishes that the code
accurately solves the mathematical model
incorporated in the code (i.e., that the code
is free of mistakes for the simulations of
interest)”.

• ASME V&V 20 also says “Code verification,
establishing the correctness of the code
itself, can only be done by systematic
discretization convergence tests and
monitoring the convergence of the solutions
towards a known “benchmark” solution (i.e.,
a standard of comparison).”

• What if a computational model doesn’t have
any discretization error? How do we do
code verification?

Figure 2: Convergence example with
and without coding errors2

2 Freno, Brian A., Carnes, Brian R., and Weirs, V. Gregory. “Code-verification techniques for hypersonic reacting flows in thermochemical nonequilibrium.”
Journal of Computational Physics, Vol. 425, Jan. 2021.

What should the testing strategy be for algebraic models?

4

• Is it a regression test?
• Regression testing is “Selective retesting of a system

or component to verify that modifications have not
caused unintended effects and that the system or
component still complies with its specified
requirements.”3

• This is typically an automated relative test that
compares today’s result with yesterday’s result,
rather than comparing with some known true
solution

• Is it a unit test?
• Unit testing is “Testing of individual hardware or

software units or groups of related units.” 3

• This is testing of individual functions rather than a
large portion of the code

• We need a test that covers a large portion of the
code and compares to a true solution
• This type of testing is with the spirit of code

verification, but different in which metric to measure

End-

To-End

Regression

Unit

Code Verification
is at this level

3IEEE StD 610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology

Using analytic solutions for algebraic models

• Since an analytic solution is readily
available for algebraic models,
comparing the code solution to the
analytic solution is straight forward
• This comparison should match exactly up

to round-off precision

• Since we are comparing the solutions
directly, only one mesh is required (more
refinements confirm results)

• Unlike the method of manufactured
solutions (MMS), no right hand side term
is needed

• To test out this strategy, we’ll apply this
code verification technique to a low-
fidelity model in a high-speed
compressible flow code

• Testing will start simple with additional
complexity added later

• Complete a validation assessment before
and after code verification testing

5
4B. W. Lance, A. M. Krueger, B. A. Freno, R. M. Wagnild, Verification and Validation Activities for the Multi-Fidelity Toolkit, Tech. Rep. SAND2022-1479, Sandia
National Laboratories, Albuquerque, NM, Feb 2022.

Figure 3: HIFiRE-1 wind tunnel simulation Mach number predictions for RANS-SST4

High-speed compressible flow problem set up

6

• Two separate problems in MFTK were analyzed
• Flat plate

• Inclined plate

• Only one mesh was required since discretization
errors were not present

• Using analytical solutions, the maximum relative
error is identified

𝜀∞ = max
𝑖

𝑄𝑜𝐼𝑖𝑒𝑥𝑎𝑐𝑡 − 𝑄𝑜𝐼𝑖𝑆𝑃𝐴𝑅𝐶
𝑄𝑜𝐼𝑖𝑒𝑥𝑎𝑐𝑡

• For problems without discretization errors, 𝜀∞
should be on the order of round-off error (10−10)

• 𝐶𝑝, 𝑃𝑒 , 𝑽𝑒 , 𝑀𝑒 , 𝑇𝑒 , 𝜌𝑒 , 𝒏𝑣 , Dist, 𝜏, and 𝑞𝑤 are tested

Flat Plate Problem

Inclined Plate Problem

Initial code verification results

7

• Code verification of inviscid variables have
been previously completed

• Compute 𝜀∞ for each QoI
• Coding error exists if 𝜀∞ > 10−10

• Coding error does not exists if 𝜀∞ < 10−10

Flat Plate Problem Inclined Plate Problem

• The shear stress and heat flux for all three
viscous models have coding errors

• Debugging of these models can now start

Code bugs found

Code Bug in Laminar Equations

• A code bug was identified in the laminar
coefficient of skin friction calculation
• Impact shear stress and heat flux

• All other inputs into this equation were
verified

8

𝐶𝑓 ≈
0.455

𝑆2 ln2
0.06
𝑆 𝑅𝑒𝑥𝑒

𝜇𝑒
𝜇𝑤

𝑇𝑒
𝑇𝑤

𝑆𝑏𝑢𝑔 =

𝑇𝑎𝑤
𝑻𝒘

sin−1 𝐴 + sin−1𝐵

𝑏𝑏𝑢𝑔 =
𝑇𝑎𝑤
𝑇𝑤

𝑏𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑇𝑎𝑤
𝑇𝑤

− 𝟏

Code Bug in Turbulence Equations

• A code bug was identified in the turbulent
coefficient of skin friction calculation
• Impact shear stress and heat flux

• All other inputs into this equation were
verified

𝐶𝑓 =
0.664 𝐶∗

𝑅𝑒𝑥𝑒

𝐶∗ =
𝜌∗𝜇∗

𝜌𝑒𝜇𝑒

𝜇𝑏𝑢𝑔
∗ = 𝐶𝑣𝑖𝑠𝑐𝑻𝒘

𝑻𝒘
𝑻𝒘 + 𝑆𝑣𝑖𝑠𝑐

𝜇𝑐𝑜𝑟𝑟𝑒𝑐𝑡
∗ = 𝐶𝑣𝑖𝑠𝑐𝑻

∗
𝑻∗

𝑻∗ + 𝑆𝑣𝑖𝑠𝑐

𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =

𝑇𝑎𝑤
𝑻𝒆

sin−1 𝐴 + sin−1𝐵

𝐴 = 𝑓 𝑏 𝐵 = 𝑓 𝑏and

Initial code verification results

9

• Once the coding errors were fixed, the
simulations were reran

• Computed 𝜀∞ for each QoI
• Coding error exists if 𝜀∞ > 10−10

• Coding error does not exists if 𝜀∞ < 10−10

Flat Plate Problem Inclined Plate Problem

• Since all variables have 𝜀∞ < 10−10, no
coding errors exist

• Code verification activities can continue for
more complex scenarios

Measuring the impact

• Now that the model is bug free, let’s
measure the impact on a validation
study

• Using the HIFiRE-1 wind tunnel test data,
we are able to see the impact of these
coding errors on assessing model form
error

• This process also highlights the
importance of completing code
verification before a validation study

• Both a laminar case and a turbulent case
results are shown

10

Figure 3: The HIFiRE-1 wind tunnel test geometry that shows the fore-cone on the
left, the cylindrical section in the center, and the flare on the right; from Wadhams
2008. The text states that the final nosetip was changed from sharp to a radius of
2.5 mm and the flare angle was changed from 37˚ to 33 ˚.

Impact on results

• For the laminar case, small differences
are seen along the streamline direction

• This would have a small impact on
validation

11

• For the turbulent case, large differences
are seen along the streamline direction,
especially at the tail

• This would have a large impact on
validation

Simulation results generated by
Jared Kirsch of Sandia National Labs

Algebraic models with discretization errors

• For certain problems, numerical errors
can be present
• Geometric discretization

• Only part of the model is algebraic

• Iterative errors can still be present

• Break problem up into purely algebraic
and discrete if possible

• Initial testing should match analytic
solution to round-off for algebraic
portion

• Order-of-accuracy testing should cover
portions of the code that were not
testing in previous testing

• Cone problem introduces geometric
discretization

• Additionally, the streamline (Dist)
calculation introduces discretization error

12

Curved Mesh

Conclusions

13

• We applied code verification methods in
a slightly different way

• We apply this methodology to a high-
speed compressible flow code

• Three coding errors were identified in
the calculation of the coefficient of skin
friction

• We showed the impact of the code bug
on the HIFiRE-1 wind tunnel test
problem
• This highlights the impact on a validation

assessment

• Future work is to continue code
verification on the cone problem, which
will use order-of-accuracy testing

• When selecting problems, it is valuable
to isolate specific errors
• Start simple and evolve tests to include

more possible sources of errors

• Acknowledge that the “verification
infrastructure” can be causing issues
• Add unit testing to cover calculating the

analytic solution

