

Nuclear Decontamination & Decommissioning

Rome, Italy March 20 -21, 2018

Presenters

Edward Martin
James McIntyre

- Quality Services Managers with Sargent & Lundy of Chicago, Illinois of the United States
- Extensive Nuclear Industry experience

Edward Martin

Quality Services Manager - Sargent & Lundy

- 50 years of electric industry experience.
- Extensive nuclear power plant experience from construction to operations to decommissioning.
- Various Quality roles at Exelon Nuclear from 1967 to 1998. Joined Sargent & Lundy in 1998.
- Quality Manager for a number of D&D projects.

James McIntyre

Quality Services Manager - Sargent & Lundy

- 32 years of nuclear power plant experience from construction to operations to decommissioning.
- Various Quality roles at Exelon Nuclear from 1985 to 1999. Joined Sargent & Lundy in 1999.
- Executive Committee Chairman of ASME
 Nuclear Quality Assurance (NQA) Committee.

Tuesday, March 20 (1000 - 1115)

James McIntyre
Sargent & Lundy
james.w.mcintyre@sargentlundy.com

- Reactor Decommissioning Options
- Worldwide Status of Decontamination & Decommissioning
- Costs and Finances
- Other Considerations

Reactor Decommissioning Options

- Immediate Dismantling/Early Site Release/Decontamination
 - Trojan (US) and Greifswald (Germany)
- Safe Enclosure/Safstor
 - TMI 2 (US) and Dresden 1 (US)
- Entombment
 - Chernobyl (Ukraine) and Piqua (US)

Immediate Dismantling/Early Site Release/Decon

- Allows for the facility to be removed from regulatory control relatively soon after shutdown
- Final dismantling or decontamination activities may begin within a few months or years depending upon the facility
- Equipment, structures, and portions of the facility containing radioactive contaminants are removed or decontaminated to a level that permits release of property and license termination

Greifswald

1990 - Upgrade to new safety standards too costly.

1995 - Decommissioning began

Source: Bloomberg News

Trojan

1993 – D&D begins

2006 - Cooling tower demolition

Source: CBS News

Immediate Dismantling/Decon Benefits and Concerns

Benefits

- Prevent cost escalations
- Experienced facility personnel available
- Regulatory uncertainty minimized
- Site available for reuse

Concern

Higher radiation rates and increased waste

Safe Enclosure (SAFSTOR)

- Deferred dismantling
- Postpones the final decommissioning for a longer period, usually 40 to 60 years
- Nuclear facility is placed into a safe storage configuration during this time in which the radioactivity is allowed to decay before dismantlement commences

SAFSTOR

Dresden Unit 1 in SAFSTOR

SAFSTOR Benefits and Concerns

Benefits

- Reduced quantity of radioactive material to be removed during decontamination phase
- Lower radiation exposure rates
- Potential technology enhancements

Concerns

- Extended maintenance and monitoring and potential costs
- Public perception

Entombment

- Place the facility in a condition that allows the remaining material to remain on-site indefinitely
- Radioactive contaminants are permanently encased on site in structurally sound material such as concrete with the goal of preventing a release of radioactive material
- Facility is maintained and monitored until the radioactivity decays to a level that would permit restricted release of the property

Entombment

Piqua- demonstration plant ceased operation in 1966 and containment entombed.

Source: U.S. Department of Energy

Entombment Benefits and Concerns

Benefit

Monitoring cost savings over SAFSTOR

Concerns

- Nuclear leakage and public perception
- Longer term of liability
- Long term monitoring required

Status of the Industry

- Plant Status
- Forecast Going Forward

Status of the Industry - 2017

Three reactors were permanently closed in 2017:

- In Germany, Gundremmingen-B was closed in December as part of the country's nuclear phase-out policy.
- South Korea and Sweden both shut down their oldest units - Kori-1 and Oskashamn-1.

In addition, two more Japanese reactors, Ohi-1 and -2 were officially closed after the operator abandoned plans for restart and lifetime extension.

Reactor Status*

In Operation	Shutdown/Under Decommissioning	Fully Decommissioned
448	166	15

^{*} Per IAEA PRIS Database

Decommissioned Reactors in United States

- Big Rock Point
- Fort St Vrain
- Haddam Neck
- Maine Yankee
- Pathfinder

- Rancho Seco
- Shippingport
- Shoreham
- Trojan and
- Yankee Rowe

Per NEI Report of August 2016

Reactors in Decommissioning in U.S.

- Crystal River 3
- Dresden 1
- Fermi 1
- Fort Calhoun
- GE Vallecitos
- Humboldt Bay
- Indian Point 1
- Kewaunee

- La Crosse
- Millstone 1
- Peach Bottom 1
- San Onofre 1,2,3
- TMI 2
- Vermont Yankee
- Zion 1, 2

Shutdown/Under Decommissioning by Region

Source: IAEA PRIS Data

Number of Reactors

25

30

35

NETHERLANDS SWITZERLAND

State of the Nuclear Industry United States Plant Status

State of the Nuclear Industry United States Plant Status

Source: U.S. Energy Information Administration, based on Nuclear Regulatory Commission and IAEA Power Reactor Information System

Non-European Forecast*

Country	Potential Shutdown Before 2030
United States	5
Canada	14
Korea	9
Japan	23

^{*} Based on Organisation for Economic Co-Operation and Development Data – Assume shutdown after 60 years operational time in United States and 40 years all others

European Forecast*

Country	Potential Shutdown Before 2030	Country	Potential Shutdown Before 2030
Russia	23	United Kingdom	15
Germany	8	Belgium	7
Spain	7	Sweden	4
Switzerland	4	Finland	2
France	1**		

^{*} Source: IAEA PRIS Database. Based on Organisation for Economic Co-Operation and Development Data – Assume shutdown after 40 years operational time

^{**} Due to license extension

- Costs and Finances
 - Costs and future estimates
 - Financing methods
 - Prepayment
 - External sinking funds
 - Surety fund, letter of credit or insurance

Costs and Future Estimates

- Labor, energy, and waste material transportation and disposal are the primary components of decommissioning costs.
- 2016 cost estimate in United States for the 99 operating and 11 non-operating nuclear reactors was 91 billion USD (approximately 74 billion Euro). This is approximately 827 million USD (668 billion Euro) per reactor.
- On a per KW breakdown the cost estimate is approximately \$800 to \$850/KW (647 to 687 Euro)

Financing Methods

- Prepayment: Money is deposited in a separate account to cover decommissioning costs even before the plant begins operation. Funds can only be withdrawn for decommissioning purposes.
- External sinking funds: Money built up over the years from a % of the electricity rates charged to consumers. Proceeds placed in fund outside utility control.
- Surety fund, letter of credit or insurance: Products purchased by the utility to guarantee that decommissioning costs will be covered even if the utility defaults.

Funding in United States

53 billion USD (43 billion Euro) has been set aside as of 2016.

The U.S. regulations require:

- Determination of the minimum decommissioning funds assurance
- Annual adjustment to account for inflation
- Reporting on fund status every 2 years during operation and every year when plant is within 5 years of end of operating life
- Site specific decommissioning cost estimate within 2 years of shutdown
- Limited use of funds to legitimate decommissioning expenses.

Additional Considerations

- Spent fuel storage
 - Methods
 - Technology
 - Costs
- Public perception and participation
- Recycling and reuse of materials
- Others?

ISFSI Locations in the U.S.

QUESTIONS

James McIntyre Sargent & Lundy james.w.mcintyre@sargentlundy.com

