
Slide 1
LA-UR-15-22751 v2

ExactPack: A Master Code of Exact
Solutions for Code Verification

Robert L. Singleton Jr.

Los Alamos National Laboratory
bobs1@lanl.gov

Collaborators:
Scott Doebling
Daniel Israel
James Kamm

ASME V&V Symposium 2015
Las Vegas, NV
13-15 May 2015

LA-UR-15-22751 v2

Slide 2
LA-UR-15-22751 v2

•  ExactPack (LA-CC-14-047) is a Python package of exact solutions to

physics problems and their corresponding verification analysis packages.

•  Use as stand-alone code or a Python package in other codes

•  Python driver scripts access a library of exact solutions written in Fortran,

C, or python (and can be easily expanded)

•  Self-documentation and unit tests

•  ExactPack also contains a library of python analysis scripts for code

verification (convergence analysis)

•  Collaborative model, i.e. add your own solver on GitHub
 www.github.com/losalamos/ExactPack

I. ExactPack: Exact Solutions and Verification

Slide 3
LA-UR-15-22751 v2

We first select a verification problem: in this talk we
choose the Sod shock tube for simplicity.

-  Find an exact solution code to the problem, e.g. sod.f
 - internet
 - write one yourself
 - ask a friend (Jim Kamm)
-  Create user interface
-  Run code and plot data
-  Compare against a hydro code that is to be verified.

This can be a long and error prone process itself!
ExactPack is designed to provide these capabilities.

Slide 4
LA-UR-15-22751 v2

A

b

 analysis tools

ExactPack integrates verification analysis and an exact
solution library into a single stand-alone Python package

-  Exact solutions library

-  Python API integrates

the solution library into a
common framework:

 (a) import into scripts
 (b) GUI
 (c) command line control

-  Analysis tools
 (a) plot solutions with
 run data
 (b) convergence study

analysis.py

Slide 5
LA-UR-15-22751 v2

Exact solutions currently implemented in ExactPack

•  Riemann Shock Tubes (6 problem variants)
 Sod, Einfeldt, Stationary-Contact, Slow-Shock, Shock-Contact-Shock, LeBlanc

•  Noh
•  Sedov
•  Riemann with the JWL EOS (2 variants)
•  Guderley
•  Coggeshall problems (20 of the 22 problems)
•  RMTV
•  Su-Olson
•  Mader
•  Escape of High Explosives Problem
•  Steady Domain Reaction Zone Problem

hydro +
rad/conduction

pure hydro

high
explosives

Slide 6
LA-UR-15-22751 v2

II. The Sod Shock Tube in ExactPack

t=0
t=0.25 s

x=0 x=0.5 cm x=1

γ = 1.4	

ρ= 1 g/cm3

u = 0 cm/s
p = 1 dyne/cm2

γ = 1.4	

ρ= 0.125 g/cm3

u = 0 cm/s
p = 0.1 dyne/cm2

t=0 s

Slide 7
LA-UR-15-22751 v2

ExactPack/src/kamm/riemann/shktub.f90

Subroutine riemann_kamm(time, npts, x, xd0, gammal,
gammr, … , rho, p, u, sound, sie)

!f2py intent(out) :: rho, p, u, sound, sie
!f2py intent(hide) :: npts
!f2py integer :: npts
!f2py real :: rho(nstep), p(nstep), u(nstep),
!f2py real :: sound(nstep), sie(nstep)
!f2py real :: time, x(npts)
!f2py real :: gammal, gammar, rhol, pl, ul, …

Integer npts!
real*8 xpos(npts), rho(npts), p(npts), ...!
real*8 time, xd0, gammal, gammar, ...!
...!
Do it=1, npts!
 xi=x(it)!
 Call SHKTUB(xi,rhol,rhor,pl,pr,ul,ur,...,!
 rhoi, pi, ui, souni, siei)!
 rho(it) = rhoi!
 p(it) = pi!
 u(it) = ui!
 sound(it)= souni!
 sie(it) = siei!
EndDo!
End Subroutine riemann_kamm!

original
source
code

step 1
Add a wrapper riemann_kamm
to the original Fortran source
code, and insert f2py directives.

Return the python output
quantities: rho, p, u, sound, sie

Call the original subroutine

Adding a Fortran Solver to ExactPack

Slide 8
LA-UR-15-22751 v2

ExactPack/src/kamm/riemann/shktub.f90

Subroutine riemann_kamm(time, npts, x, xd0, gammal,
gammr, … , rho, p, u, sound, sie)

!f2py intent(out) :: rho, p, u, sound, sie
!f2py intent(hide) :: npts
!f2py integer :: npts
!f2py real :: rho(nstep), p(nstep), u(nstep),
!f2py real :: sound(nstep), sie(nstep)
!f2py real :: time, x(npts)
!f2py real :: gammal, gammar, rhol, pl, ul, …

Integer npts!
real*8 xpos(npts), rho(npts), p(npts), ...!
real*8 time, xd0, gammal, gammar, ...!
...!
Do it=1, npts!
 xi=x(it)!
 Call SHKTUB(xi,rhol,rhor,pl,pr,ul,ur,...,!
 rhoi, pi, ui, souni, siei)!
 rho(it) = rhoi!
 p(it) = pi!
 u(it) = ui!
 sound(it)= souni!
 sie(it) = siei!
EndDo!
End Subroutine riemann_kamm!

Adding a Fortran Solver to ExactPack

original
source
code

 class Sod(Riemann)

 gammal = 1.4
 gammar = 1.4
 interface_loc = 0.5
 rhol = 1.0
 pl = 1.0
 ul = 0.0
 rhor = 0.125
 pr = 0.1
 ur = 0

ExactPack/exactpack/riemann/kamm.py

 class Riemann(ExactSolver)

 def _run(self, r, t)

 rho, p, u, sound, sie = riemann_kamm(time=t, x=r,
 xd0=self.interface_loc, gammal=self.gammal, …)

step 2: python-f90 interface step 1: wrapper for original source

step 3: short alias

Slide 9
LA-UR-15-22751 v2

Python script to plot Sod from ExactPack

from exactpack.solvers.riemann import Sod

r = numpy.linspace(0.0, 1.0, 1000)
t = 0.25

solver = Sod()
soln = solver(r, t)

soln.plot(‘density’)
soln.plot(‘pressure’)
soln.plot(‘velocity’)

…
Other plot directives
…
plt.savefig(‘sod.png’)
soln.dump(‘sod.dat’)
plt.show()

solver object
solution object

solution object
can plot itself,
i.e. it has a
plot method

spatial array and time

import Sod object

Slide 10
LA-UR-15-22751 v2

Example script using the CodeVerificationStudy object
from exactpack.sedov.riemann import Sod
 from exactpack.analysis import CodeVerificationStudy

 study = CodeVerificationStudy(code-output,
 Sod(),
 dx=[0.02, 0.01, 0.005, 0.0025, 0.00125]
 domain=(0, 1.0),
 reader=code-reader)

 Plot study
 study.plot('density’)
study object has a plot method

Slide 11
LA-UR-15-22751 v2

 Zoom in on shock
 import matplotlib.pyplot as plt

 plt.xlim(0.65, 0.8)
 plt.ylim(0.25, 0.45)

Use native Python within ExactPack

study.plot('density’)

Slide 12
LA-UR-15-22751 v2

The convergence method for a study object

 study.convergence('density').plot(fiducial=1.0)

the study object can use a
convergence analysis method

Slide 13
LA-UR-15-22751 v2

III. ExactPack is fully documented -  theory
-  usage
-  reference

Slide 14
LA-UR-15-22751 v2

IV. Conclusions

•  ExactPack is a new utility for code verification
 - Library of exact solutions
 - Collection of analysis utilities

•  Stand alone or integrate into other scripts

•  Expandable: Python, Fortran (77/90/95), C

•  Auto-documenting (Python doc-strings and rst)

•  Unit testing (and more unit testing)

•  Collaborative model: will be on www.github.com/losalamos/ExactPack

Slide 15
LA-UR-15-22751 v2

Abstract

For code verification one compares code output against known exact solutions. There are
many exact solutions used in this capacity, such as the Noh and Sedov problems. Such
exact solution codes are usually stand-alone programs that can be downloaded from the
web, after which the user must roll out his or her own plotting package and analysis utilities.
When comparing across multiple codes, this can be a time consuming and error prone
process. ExactPack is a new utility that integrates many of these exact solution codes into
a common API (application program interface), and can be used as a stand-alone code or a
python package. ExactPack consists of python driver scripts that access a library of exact
solutions written in Fortran or Python. We have documented the physics of each problem in
the solution library, and provided complete documentation on how to extend the library to
include additional exact solutions. ExactPack’s code architecture makes it easy to extend
the solution-code library to include additional exact solutions in a robust, reliable, and
maintainable fashion. This talk will emphasize the ease with which a new solver package
can be added to ExactPack, and will include a live demo of the plotting and analysis
capabilities.

